Tag Archives: Training plan

Keeping it simple!

The world of fitness is heavily influenced by marketing and advertising. Fitness now seems to be not so much concerned with sport as it is body image. With a result knowledge and theory have been diluted by sensational claims and marketing. You do not have to look too far for new radical training programs that guarantee all your goals to come true in half the time of any other program. This is all part of the industry and things are unlikely to change.

Most high level athletes have qualified coaches to help them avoid such distractions. Young athletes and the average Joe on the other hand, often rely on what is put in front of them. As a result, they either follow outrageous plans or jump from one to another as the sales pitches keep getting better. The ironic thing is that the basics work best. More often than not the most advanced athletes train with the simplest programs.

Often when discussing training with coaches of other athletes or teams it becomes clear that there are no secret weapons. The best athletes all seem to be doing extremely similar programs competing in totally different sports and cultural backgrounds. There are tweaks based on the nature of their sport and individual needs but the basic structure is always pretty similar.

The Squat, Lunge, Deadlift, Bench Press, Row and Chin-up are the foundation of all strength programs. They cover all basic movement patterns. There are variations but these exercise patterns are always present. Any additional exercises are determined by the sport and any prehab/rehab needs of the athlete as an individual. Rep schemes are dependent on the goals. Strength, Power, Hypertrophy and endurance goals will have appropriate and fairly standard rep ranges. A standard strength session will rarely last much longer than an hour to an hour and a half. If it does then there is either some special consideration to duration or technique/skill that is being addressed. If a session lasts longer, then one should question the efficiency of the workout design.

Some might question why they cannot achieve elite level abilities following simple programs. The answer is quite simple. Elite level athletes achieve elite level status as a result of genetic suitability to their sport coupled with years of execution of appropriate training. You don’t look like a 10 year veteran weightlifter after a year of training no matter how hard you train. Also important to note is the support structure of an elite level athlete. Having dietitians, chefs, doctors, physiotherapists, psychologists and coaches available at all times makes a very significant impact. In addition, having the time to focus on both training and all that makes up recovery puts them at a huge advantage. One could follow one single program in both an amateur and professional setting and there would be no comparison in the results.

"The missing piece of the puzzle"

“The missing piece of the puzzle”

The take home message is that no matter how things are pitched the basics work! Simplicity leaves less room for error and when consistent it is very rare one cannot make steady progress. Short cuts do not exist in natural circumstances. It is important not to fall for the most glamorous program as you will simply be fooling yourself. We have a very simple philosophy with our athletes. If they are making progress then things are working. “If it aint broke don’t fix it”, athletes often want the next stage of their training before progress stalls. It is important for coaches and athletes to realize that progress is key. Deviating from a plan can often be greed related. It is important to have modest goals and the discipline to not get carried away. Often trying to do too much is the biggest error in training. Often our athletes make their best progress when we strip their program back to the basics.

The Great Offseason!

For many sports in the Northern Hemisphere we are now entering the offseason portion of the annual cycle. For some this is simply a period in which they can cut loose and not worry too much about their training. For others this offseason could be a make or break point in their career. It can be very hard for an athlete to make progress in their offseason for a number of reasons. A lot of athletes fail to stay committed and motivated when they are outside of their team environment or without any immediate competition scheduled, others can be over eager and try to do too much. This can often lead to overtraining and burnout despite being outside of the competition period. Planning and organization is key to a successful offseason. The following article will discuss how to get the most out of an offseason and hopefully allow athletes to step up their ability for next season.

Step 1: Analysis

At the end of a competitive season athletes and coaches should review the performance of the season. Often mistakes are pretty clear at this point and athletes will have a good idea of their weaknesses. In order to maintain motivation and commitment it is important to identify areas where progress can be made. There is nothing more disheartening than finishing a season and being clueless as to where to improve. Regardless of success or failure, the notion of progress is a powerful motivator. Honest analysis of strengths and weaknesses is essential at this point. Building an offseason program is relatively simple if an effective evaluation has been completed.

Step 2: Rest

Often the first thing we tell an athlete to do is rest. A few weeks rest can be very beneficial at this time. Mental and physical strain stacks up over a season and often a couple of weeks rest can have a major impact on an athlete. The amount of rest depends on the time available but even a week can be enough to reset the athlete. Often this rest also makes an athlete restless and eager to train. This can be beneficial in an offseason where there is no competition to create that eagerness to work.

Step 3: The Program

This is obviously a very important component and will depend on the outcome of their end of season evaluation. The offseason should be approached with a triage perspective. Take care of the biggest weakness first. One caveat to this is timing. Some adaptations occur over very different time frames. For example an athlete may be a little undersized but definitely too slow. Addressing speed is essential but should not be done until the athlete is at a consistent weight. Hypertrophy may take more time and energy from an athlete. Often it can be hard to address hypertrophy inseason relative to speed and so the offseason period is more suitable to address it. Speed can then become a part of late offseason/preseason period. Careful planning is essential to ensure that the focus on one ability does not overwrite another.

There is great debate on the structure of programs and their efficiency. We take an approach with our athletes where we utilize block periodization in the offseason and then move towards concurrent and/or conjugate style during preseason and in season. The reason is most athletes tend not to lose their strengths significantly and if they do they usually regain them quite fast. In the offseason we use block periodization to really focus in on their weaknesses and make as much of an impact as possible. Sometimes this may neglect some of their stronger areas. When we move towards a conjugate style we hit on a little of everything. We then see a rapid return in their strengths while maintaining the progress made in their weak areas. The offseason then serves to fill in the holes in their abilities. For the majority of athletes this approach is effective in improving their performance from one season to another.

The offseason period can make a huge difference to an athlete. If it is individualized and shows the athlete a genuine prospect for improvement then motivation won’t be a major problem. Diligent monitoring of program will then make the program effective as it can be tweaked where needed to suit the needs of the athlete. The biggest mistake to make is to use a generic program which does not address the individual. This often makes situations worse as the athlete may fail to fix his weaknesses. There is nothing worse than the feeling an athlete has where no progress is being made. Consecutive seasons of stagnant performance can be a death blow to many athletes careers.

Training age!

Training age is an important concept which both athletes and coaches should be aware of. Many now make the mistake of comparing athletes based on age. This is especially true at underage level and young adult athletes. Often we are impressed with young athletes who stand out physically from their peers. We also often disregard athletes who might be behind others of their age. This is a big mistake to make for both athletes and coaches as it can lead to a loss of potentially good athletes.

In an age where professional sport is so popular, the physical development of young athletes begins much younger than ever before. Some teams and organizations place more emphasis on physical development than others. It is now pretty common to have a wide range of physical ability across a group of athletes of a same age in a particular sport. This has now become an issue for some coaches as they must deal with players of quite varied levels of development.

It is quite common for athletes to feel under pressure to catch up to their peers especially if they have not yet put direct work into their strength and conditioning. Often when working with a team some players struggle as they are total novices to strength training. It is common for a school player to arrive at university and be thrown into an advanced program which they are not ready for. Even on the field of play they may be noticeably smaller or weaker while being extremely skillful. These players can become targets especially in contact sports where they might be identified as a weak links.

Sports such as American football have been professional for decades and now have a structure in place where they give the less developed players time to catch up. Often in their freshman year they spend most of their time focusing on their physical development rather than playing. This allows them to avoid injury and/or a loss of motivation from being beaten around by bigger players in their first season. By allowing them to catch up they can often be quite successful in their consecutive seasons as they are big and strong enough to compete.

In sports like rugby we are now at a stage where early focus on strength and conditioning is common but not always present at school level. Players can make rapid progress with direct attention to their physical attributes. The issue is that while they try to address these issues they still play regular games and partake in multiple skills sessions a week. This does not leave much time for recovery and some players may struggle to make the desired progress. Often they can be discouraged and a loss of motivation and attendance can occur. They simply slip through the net.

A good sports program will acknowledge that players come from varied backgrounds. Their age is no longer a reflection of their physical development as some have undertaken S&C programs for years while others have never seen a weight room before. The best organizations make allowances for this and treat players on a more individual basis. This way a player’s potential can be realized without letting good players go to waste simply because their training age is lower than their peers. Often players who were once seen as underdeveloped can become serious contributors to the team when given the chance to achieve their potential. A coach should be aware of the background of each player so as to avoid missing out on a player whose potential is hindered due to underdevelopment.

Blueprint for big legs!

My old coaches used to say “The legs feed the wolf! There are few sports where having big, strong legs does not carry over into performance. Many people struggle to build leg size and strength while others have no issues at all. This post will discuss some factors which can influence growth of the leg musculature and how one can use this knowledge to their advantage.

Muscle is not all the same; there are several types and subgroups with different characteristics. Mostly when dealing with skeletal muscle we define the fibers as either Type 1 (Oxidative or Slow twitch) or Type 2 (Glycolytic or Fast twitch). Every muscle is made up of bundles of muscle fibers. Each bundle is from all of the same fiber type and innervated by a single nerve. The bundle and nerve assembly is known as a Motor Unit (MU).

Type 1 fibers tend to be smaller in size and produce less force. They also have excellent blood supply and mitochondrial density which makes them very efficient at oxidative metabolism. This means they don’t fatigue easily. Type 2 fibers are larger in size and more powerful. Unlike Type one they are not so efficient at oxidation and rely heavily on glycolysis, intramuscular ATP and Creatine Phosphate stores for energy. They are much more fatiguable than Type 1 fibers.

The recruitment of the muscle fibers is in order of size, from small to large. The rate and quantity of recruitment will depend on the activity. Slow, low force movements may only require a small recruitment of some type 1 fibers, whereas a heavy lift or sprint will additionally recruit a large portion of type 2 fibers.

When we are born we are genetically predisposed to having a larger distribution of one fiber type over another. With training we can influence a switch over, from one fiber type to another. The fibers will be persuaded to take on new characteristics rather than switch totally. In our earlier years of training and sport we have a large influence on the muscle fibers as they develop. In addition, our genetic makeup will naturally direct us into sports we are suited to physiologically as we are more likely to have success.

When we look at body parts and muscles, the fiber distribution can be influenced by the function. For example forearm muscles contain higher amounts of type one fibers, as grip endurance is required for relatively constant movement of hands and fingers. Legs are similar because we spend relatively large durations of time on our legs, walking and standing etc. For this reason legs will always have a relatively large amount of type 1 fibers.

Micro trauma to the fibers is the catalyst for growth. When we recover, micro tears in the fibers are repaired and the fibers become larger and stronger. Tension and metabolic stress are the two things that will cause stress and trauma. Time under tension (TUT) has long been regarded as a key factor in muscle growth. The more time a fiber is placed under tension the more damage created. In addition metabolic stress can also be quite effective at creating trauma. All we have to do is look at a track cyclist or sprinters legs to demonstrate this.

Putting this knowledge into practice is pretty simple. In order to successfully create hypertrophy in the musculature we must stimulate and cause trauma to both sets of fibers. The challenge with type 1 fibers is that they are harder to fatigue. They need higher volume to do this, and so a higher rep strategy should be employed. The challenge with the type 2 fibers is activation. Heavier and more explosive lifts are needed to activate and fatigue them. Lower reps with heavier weight, combined with some power and sprint training will be needed to promote growth of these fibers.

Tom Platz was famous for utilising high reps sets to produce bodybuildings most famous legs.

Tom Platz was famous for utilising high rep sets to produce bodybuilding’s most famous legs.

This not only applies to athletes but also to bodybuilders. The secret to growth is to cover all your bases and keep things simple and consistent. Using a combination of high and low rep training will provide a good overall stimulation making sure you are covering everything. When used as a part of a simple progressive training plan and combined with adequate recovery any athlete will build bigger stronger legs. The key point is to target the fibers effectively so they respond. If you rely on one technique exclusively it is unlikely that you will have long term success.

As with most training, athletes must try and learn their weakness and how to fix them. They can then target the issues with a balanced program to give them a well rounded base. The more familiar they are with the physiological factors involved the more effective a training program can be!

Follow on Facebook https://www.facebook.com/HamiltonSport1Official

Or Twitter @Hamiltonsport1

Training day or night!

This post comes in response to a question we had from one of our readers. He asked “Why can I lift more when I train in the evening, as opposed to early morning training?” First of all, everyone is a little different in terms of what works for them and what they prefer. There is not always a wrong or right when it comes to training. Often the answer lies between what works and what allows you to be consistent. However, there may be some physiological reasons which could answer why someone may perform better later in the day than in the morning. Circadian rhythms which are often overlooked when it comes to health and performance science but they are very real. These are natural rhythms of life which we constantly are subject to. The seasons and solar cycle are two such examples which have a direct impact on our lifestyle and health. Our body has a natural flow of hormones and neurotransmitters which are directly influenced by our environment. When we sleep our body goes into standby mode allowing us to rest and recover. When we awake there is a cascade of hormones and neurotransmitters that prepare us to go about our daily business.

This all starts with the suprachiasmatic nucleus (SCN) located within the hypothalmus a very active part of the brain, which is essentially the control centre for our endocrine system. The SCN is stimulated by sunlight through our eyes and triggers our start up switch on a daily basis. Other hormones such as cortisol, testosterone, and human growth hormone follow similar patterns stimulated and regulated by a number of other factors. The timing and magnitude of these chemical patterns will vary slightly from one individual to another. These rhythms can therefore dictate when we are primed for certain actions. One of these rhythms is our body temperature. We tend on a consistent basis to have a daily peak in the afternoon. This is provided we do not influence it through exercise etc. Increased body temperature optimises muscle contractile function and a range of other things that can improve our strength performance.

In addition to these natural rhythms we have lifestyle influences. We know that there are nutritional differences from morning to evening. When we wake, we are in a fasted state and usually the complete opposite in the evening. The ingestion of certain food types can dramatically alter mood state and energy levels. We also have decreased flexibility as a result of lying relatively stationary for a long period. Sleep inertia is also an influence. This is that sleepy, clumsy mood you feel when you awake in the morning and it takes time to recover from. These are all factors which not only impact performance but also mood and motivational state. These exclusive of other factors, can be significant.

Some people are relatively unaffected by these things, while others may feel them dramatically. We are creatures of habit and sometimes we simply become used to doing things in a certain way. When we break routine our mood can reflect it. Regardless of these factors an individual may feel more prepared to train in the morning and see no real difference to training in the evening. It all comes down to the individual. In terms of management of an athletes performance we should consider this issue and take it into consideration for planning. Training should ideally be scheduled at approximately the same time of day as competition. Over time the athlete will learn to manage themselves in such a way that they can perform optimally come competition time.

I hope I managed to answer the question sufficiently!

Science of strength!

In this post I will discuss the physiological components that make up physical strength. In general the strength of a muscle is determined by its cross sectional mass. When we assess the improvement of strength in a muscular contraction, we see a significant increase in force output in a short space of time with no change in mass. This shows us that there is also a neural component that plays a significant role in strength. In order for a muscle fiber to hit a peak contraction it must be stimulated fully. A beginner to strength training will be unable to reach his true max because he will be neurally untrained. This means he is not capable of using all his muscle fibers or even capable of using the select few to their full potential.

When we want to move, we send a chemo-electrical signal from brain to the muscle which results in a contraction. The more signals we send the more forceful the contraction. In order to achieve maximum contraction we must have a constant and rapid train of impulses coming from our brain. The route the impulse takes down the nerves must be capable of sustaining and transmitting these signals. Early in our training it is these nerves which improve at delivering stimulus, that results in strength improvements.

There are several factors which can prevent us achieving maximum contractile forces. We have safety mechanisms which prevent us reaching our limits in order to prevent damage to our muscle tissue. These mechanisms are largely involuntary and are not simply a case of pushing harder. When we train the thresholds for these “safety switches” raise, allowing us to lift more. This is partly because our muscles become more conditioned and less susceptible to damage but also because our overriding mechanisms improve. We can prove this theory by using a simple maximum voluntary contraction test on a muscle. An athlete produces their strongest contraction and when it peaks we add extra stimulus externally with an electric impulse. The peak will increase significantly higher than voluntary stimulus could achieve, proving there is more force possible.

So how do we increase strength? There a couple of areas which can be improved. First we need to train the movement. Becoming more accustomed to the movement helps us learn the pattern of muscle activation required to perform the action effectively. Second we must improve stimulation and muscle activation. The obvious method is working closer to our maxes which in theory requires a “close to max muscle contraction”. Become accustomed to producing maximum force will improve the mechanisms involved over time. This can be taxing on both the central nervous system (CNS) and the muscle structure itself. It will require structural recovery which takes time. Speed training is an excellent variation as it allows us to improve the rate of impulses coming from the brain. More ballistic type exercises such as jumping are a good way to improve rate of neural transmission. Adding bands or chains to sub-maximal weights for particular lifts can also be another variation to include. The increased resistance over the range of the movement requires an accelerated contraction.

Adding chains can be very effective at improving neural components involved in strength. Photo source: www.clintdarden.com

Adding chains can be very effective at improving neural components involved in strength. Photo source: www.clintdarden.com

These types of training are excellent ways to improve the neural component of strength without needing any structural recovery. They are demanding on the CNS and as always adequate recovery is necessary. The next area to work on is increasing muscle mass. This involves hypertrophy of the muscle fibers which occurs over a much longer period of time.

Becoming strong is important to all athletes but understanding what makes them strong can be just as important. The body adapts quickly and so a multidirectional approach can help progress in terms of consistency. Often athletes employ the maximal lifting approach exclusively and plateau quickly. Combining different methods over a periodised training plan can make sure that an athlete continues to improve in the long term and achieve full potential.

4 Ways to improve lactate clearance!

The accumulation of lactate is deemed to be a major determinant of performance during competition. Lactate is a byproduct of glycolysis. The accumulation of lactate in the muscle is linked with a significant degradation in contractile function and power production. Having the ability to prevent accumulation has a significant impact on the ability of an athlete to sustain performance. The onset of blood lactate accumulation (OBLA) is deemed to be the point at which its production exceeds its clearance. In order to delay this point an athlete must train to improve his ability to clear lactate during exercise. Here are four effective strategies to improve lactate clearance.

1) Long slow distance training (LSD)

Also referred to as “Steady-State” training LSD has great benefits for lactate clearance. Even though LSD is performed at low intensity it greatly improves the aerobic system. Having a strong aerobic base usually comes with good proportion of type 1 muscle fibers. Recent studies have shown these fibers to be very efficient at consuming lactate as fuel through a shuttle system which transports it from the blood into these muscle cells. LSD training in conjunction with Lactate producing activity can teach the body to consume lactate in this way, helping to prevent accumulation during higher intensity competition.

2) Threshold training

Threshold training is performed at and around the point of accumulation. This is arguably the most effective zone to train at as it is the “Threshold” at which the body can balance accumulation with clearance. Improving workload at this zone will transfer directly into sporting performance. It is considered to be the sweet spot in terms of sustainable workload. Performing volume at this zone will result in effective lactate management in the body. It up-regulates enzymes which promote the metabolisation of lactate and clearance. The body will also learn to buffer lactate more effectively using intercellular bicarbonate. These sessions can range between 3 and 10 minutes in duration at or around OBLA.

3) Tempo runs

These are somewhat of a combination of the previous methods. During a longer session an athlete will perform a series of high paced intervals spread throughout a longer interval held at a lower, sustainable pace. During these intervals blood lactate concentrations will increase. When the athlete drops eases of intensity, the body will now be able to clear lactate to manageable levels. This promotes how the athlete recovers from lactate accumulation while still exercising. This can be useful in competition where there are varied intensities throughout a race or short rest periods between bouts.

4) Sprint intervals

Short sprints result in a very rapid production of lactate as large type 2 fibers become very active. The body does not have sufficient time to respond and so accumulation occurs just as rapidly. By using short rest periods you only give the body a very short period in which to re-establish homeostasis and so it is forced to up-regulate clearance mechanisms. Training of this type not only improves clearance but also the athletes tolerance to lactate. Sessions of this type can vary in duration for both work and rest. The ratio of work to rest can be manipulated to achieve different results in terms of physiological response.

The after effects of excessive lactate accumulation during a race. Source :www.windsorstar.com

The after effects of excessive lactate accumulation during a race. Source :www.windsorstar.com

In general any activity that elevates the concentration of lactate in the blood will elicit a physiological response. Like any stress appropriate recovery is necessarily. A multi-directional approach must be taken to ensure that an athlete has an adequate exposure to lactate without over taxing the bodies recovery capacity. This can be a difficult balance and must take into consideration a number of factors including the age and background of the individual. If done correctly any individual will benefit greatly from giving focused time and training to helping improve how they handle lactate in their body.

Building the engine!

Our cardiovascular system is basically an engine. The bigger it is the more power we can produce. Like any powerful engine its performance is based on its efficiency and size. When we look at our body in terms of conditioning we should think of it like an engine. We must first build it and then fine tune it to be efficient for what we want it to do.

When we look at training we can look at it the same way. First we need to assemble the basic parts, this is the base miles in the offseason. This is what promotes the structural changes in our physiology. Our heart becomes larger and more powerful, capillarization occurs improving blood supply to the muscle fibers and in addition numbers of mitochondria increase within the cells. This process is gradual and is stimulated by large volumes of aerobic training. It is a relatively slow process but has a long lasting effect. Because longer duration is required the intensity must be relatively low in order to accumulate adequate volume without overtraining. This will gives us the foundation for our conditioning. Increasing aerobic capacity also has a vast amount health benefits associated, such as reduced blood pressure and a strong and efficient heart.

Once we build up a foundation we must then tune it. Now anaerobic style training comes into play. Anaerobic training up-regulates enzymes which promote glycolysis, the energy system utilised during high intensity. It also improves the ATP-CP energy system used during sprint type activity. The effects happen over a much shorter period of time and remain effective for a short period if training is not maintained.

HIIT has become popular because it yields results much quicker than LSD training. The issue is that the physiological changes that come from it are really only the icing on the cake. Without a strong base prior to HIT an athlete is neglecting a big part of their physiology. This is noticeable in a lot of team sports. An athlete may perform quite well at high intensity but struggle to utilise fat for fuel, causing him to tire late in a game. They also tend to recover relatively slower as their oxidative system does not have the capacity to remove lactate as effectively.

Rocky-Elsom-hands-on-head

Athlete catching breath between play. Source:http://www.rugby365.com

If an athlete wishes to have good conditioning for their sport they must build a big engine to begin with and then tune it to be suitable to their activity. Whether they use threshold work or sprint intervals to do so will depend on the nature of the sport. The point I emphasise is that a strong aerobic base should never be neglected. Regardless if the sport is an endurance sport or not a strong aerobic system will be of great benefit to most athletes as it is still a major part of their physiology.

Fat loss for athletes!

Body composition and body mass are important for most sports. The success of an athlete can rely heavily on falling within the norms of their sports, especially where a weight category is involved. Nutrition and training are both vital in the role body composition and weight management. I will not discuss dietary strategy as it is not my are of expertise. Instead I will discuss the training considerations and strategy.

Step one is for an athlete to identify whether he needs to reduce bodymass (weight) or reduce body fat. Bodymass deals directly with bodyweight on the weighing scale with no concern for body composition. Body fat deals with body composition with possibly no influence on overall bodymass. When reducing body mass the main focus, is to create a consistent calorie deficit. How one trains doesn’t really matter as bodymass will decrease over time if calorie expenditure exceeds consumption. The issue is that this reduction will not be selective in terms of tissue loss. Both muscle and fat tissue will be lost but this is not such a good thing. In many cases an athlete will need to retain as much lean mass as possible and may even need to increase or at least maintain it. This creates a more complicated scenario where fat tissue must be the focus for reduction while avoiding any muscle tissue loss. The training strategy becomes a little more complex.

We know that in terms of metabolism, exercise at lower intensities utilise fat as fuel more effectively than high intensity exercise. The main drawback is that in terms of time efficiency it takes a relatively long period to burn sufficient calories. The other issue is that low intensity work can promote adaptations that are not so favourable for an athlete. Long periods of low intensity (LSD) training can promote a conversion of type 2 muscle fibers into fibres which more resemble the characteristics of type 1 muscle fibers. The athlete runs the risk of losing strength, speed and power. So this method must be used sparingly.

High intensity training has been touted as the magic pill for fat loss and performance in recent literature. Calorie expenditure is higher for a given work period and metabolism is elevated in the post training period. Sessions must, however be shorter as they will be more demanding. It is in this post training period where an elevated metabolism and active oxidative system plays its role in metabolising fatty acids. HIT may also promote strength, power and conditioning through a number of adaptive responses. At first glance this seems to be the obvious choice. As with most training methods it carries its disadvantages. By focusing on HIT we become reliant on the Glycolytic system during exercise. This system utilises carbohydrate metabolism and is always active even at rest when the oxidative system is dominant. Over time an athlete may promote the use of carbohydrates during metabolism which will in fact spare fat cells. If they do not consume enough carbohydrates there can also be a reduction in lean tissue as muscle cells do not get enough energy to survive.

The best strategy is to utilise both methods in an appropriate fashion. LSD can be made more effective in reducing fat and improving fat oxidisation by adding fasted LSD sessions into a program. Done before breakfast or immediately following a training session, enzymes active in fat oxidation must up-regulate to compensate for glycogen depletion. This means that less time is needed to initiate fat oxidation. HIT should then be performed in a fuelled state in a separate session to make use of its benefits. When both types of sessions are used in a balanced way that does not impede the athletes recovery, they can see all the benefits while negating the disadvantages.

As with most strategies a balance is required for optimum results. The body is exceptional at adapting to stress. Overemphasising one method over another will only display short lived success and may create problems in the long run. In the case of managing body weight and body mass a strategy must be formulated to suit the needs of the individual. A gradual and monitored approach is best for achieving long term and consistent results.

Post Activation Potentiation

Also referred to as a PAP response, Post Activation Potentiation has been a tool in an athletes training arsenal for decades. The basic theory is that if you lift a heavy weight you can perform a more explosive contraction soon after. So for example you might do a heavy double on back squat. Immediately after you may do box jumps or something similar and exceed expected performance. The underlying mechanism explaining this is actually quite simple. When you perform a heavy lift or contraction you must activate larger motor units to produce a more forceful contraction. These larger motor units are often referred to as type 2 muscle fibers. These fibers are generally larger and have greater capacity to produce force than smaller fibers. When activated they become slightly more sensitive to further activation for a short period of time after. When you go to perform the next contraction it will be relatively easier to produce force as these motor units are “excited”. Due to changes in sensitivity, the rate of contraction may also be significantly improved. This allows for a better power production overall.

Not a bad example to use. Photo by Hookgrip at www.hookgrip.com

Not a bad example to show. Big lift allows for a big jump!  Photo: Hookgrip at www.hookgrip.com

Not only can this PAP response be useful for improving power, it can also help improve strength endurance. I use the term endurance loosely there. It may allow you to perform more reps at sub-maximal loads without directly influencing fatiguing factors. For example, max repetition bench press is a common test used by many contact sport teams used during team physical testing. One or two singles close to max effort prior to the test can in fact improve the result. This is provided that the athlete does not go overboard and induce fatigue prior to the test. Often the athletes state that the weight initially feels lighter in comparison to a standard work up, warm up protocol. The PAP response can also be used in a hypertrophy program where back off or drop sets are being utilised. This is quite simply due to larger motor units being pre-activated, making a more effective use of available motor units, resulting in an improved performance. Larger volume in terms of weight lifted per session translates well into these types of programs.

While this is not a new concept or theory, the underlying mechanism is often overlooked and therefore under utilised. It is quite an effective tool and one which I have seen positive results from. Having an understanding of this concept allows a coach to be a little more creative in finding ways to help an athlete reach their potential.