Category Archives: Active Recovery

What you need to know about staying hydrated!

We have all heard the importance of hydration. We have all been told how important it is to stay hydrated in order to perform optimally. Advice surrounding hydration always seems extremely generic. Why is hydration so important and how should we actually hydrate? Very seldom is this discussed with athletes.

Hydration is important as water is involved in almost every bodily function. When the body functions optimally it can perform optimally. If it is not functioning well then any stress applied to it is magnified. That is the short explanation as to why we should hydrate. Most will understand basic biology and the concept of osmosis. Solutes and water diffuse across a membrane from areas of high concentration to areas of low concentration. In regard to the body we have many forms of these membranes, the simplest being the membrane which surrounds all cells. Water is needed for many cell activities including cell metabolism, without which a cell would cease to function. The science behind cell metabolism is fascinating in itself but not all that practical for the majority of athletes.

For endurance athletes cardiac output is a critical factor. This is a product of heart rate and stroke volume (Blood volume ejected from the heart with each beat). Blood is mostly made up of water. In cases of dehydration blood plasma volume is reduced as water is excreted through sweating etc. Water and its role during sweating is the most effective element in heat management. If our plasma volume reduces there is reduction in overall blood volume as red cells become more concentrated in less plasma. This results in the heart having to work harder to pump enough blood around the body. This increase in workload is pointless additional stress for the body. It is purely a mechanistic result of water loss from the blood. It will cause a reduction in cardiovascular capacity and overall work capacity. Similar effects occur at altitude in an effort to combat reduction in oxygen pressure in the ambient air. The body increases hormones which excrete water to concentrate the blood, as less oxygen is being absorbed into the blood with the reduction in pressure.

The stomach is a key organ in the process of hydrating. Water is one of the few substances that can be absorbed by the lining of the stomach. In saying that water is also essential downstream in the small intestine for the absorption of other compounds ie. salts, sugars and amino acids. If we take in a lot of these compounds water must accompany them as a buffer in order for them to be absorbed. This is important when we look at things like sports drinks. These drinks often have high concentration of sugars and in some cases salt. This can be problematic for the rate of absorption of water. Athletes often complain of a feeling of fluid in the stomach after drinking large quantities of these drinks. That is exactly the case. Water must follow these compounds into the small intestine.

What this means is that water on its own is often absorbed faster than a sports drink. For short term exercise plain water is a better choice for rapid hydration. During longer bouts of exercise and in hot conditions many minerals and salts are lost from the body. The loss of minerals, salts and the consumption of glucose will have a significant impact on muscular and cognitive performance. In addition there is a change in osmotic gradients. This change may hinder the absorption of water. Drinking large amounts of plain water over long durations may cause potential hyponatremia (low sodium levels).

In many cases the advice given for monitoring hydration status involves examining the colour of our urine. Dark urine signifies dehydration. Lighter colored urine signifies good hydration. The concern here is that if one drinks lots of water without replacing salts and minerals, water will have problems being absorbed if salt levels are low. It can lead one into a false sense of being properly hydrated.

 

Hydration is critical to performance and must be a part of your routine.

An athlete must consider the circumstances. Short bouts of exercise, an hour long for example will not deplete salts and therefore plain water is a good choice. For bouts much longer and/or in heat, a marathon or long day hiking for example, a hydration formula is essential. By replacing salts and other compounds we can maintain a better level of hydration as well as providing essential compounds to cell function. In addition many compounds such as salt absorb better with sugars. A hydration formula should not just contain salt for this reason. Amino acids also help with salt absorption. If one uses a formula containing these other compounds they have the added benefit of replacing glucose for energy metabolism as well as reducing cell damage and aiding in recovery.

There are many commercially available sports drinks and formulas. Some are better than others. In many cases some popular brands are driven as much by taste as they are function. Many are too highly concentrated with sugar. In these cases they would be better if watered down. The level of solute concentration should reflect the conditions but in most cases weaker concentrations are less problematic. Less obvious, effective choices for hydration are targeted for a more clinical setting. Dioralyte and Pedialyte are specifically formulated for hydration without all the extras that you may find in some commercial sports drinks. One can also make a pretty decent homemade formula using natural ingredients. Water, salt and honey can form an excellent and simple hydration formula. Adding a little glutamine to the mix will also tick the box for amino acid presence.

 

Many great options but often designed for taste preference rather than hydration needs

A favorite of ours is the following. It has been tried and tested with excellent results.

1 litre of water

6 teaspoons of honey or maple syrup

½ teaspoon of table salt

 

In terms of timing it is important to constantly manage hydration. This means consuming fluids before, during and after exercise in accordance to the environment and type of exercise. Something to note is the effect of dehydration on digestion. Often athletes prioritize eating over rehydrating. In the case of multi day events this is not the best strategy. Poor hydration can lead to poor digestion and slow the process of refueling quite dramatically. Gastrointestinal stress can lead to poor sleep and other issues which have disastrous effect on performance. In the case of cutting weight for sport, water cutting is a popular method. An individual will purposely dehydration themselves in order to reduce overall bodyweight. After weighing in, if one does not rehydrate first it can be very difficult to consume food and digest properly before competition. Often a hydration formula and efficient hydration strategy will have greater benefits than eating after a weigh in. With that in mind hydration should always be priority number one. With added glucose it may also be a fast way to restore glycogen so it is beneficial in multiple ways.

Athletes need to be practical and efficient with every aspect of their performance that they can control. Hydration is extremely important but rarely discussed in practical terms. When one considers the circumstances and has some understanding of the process one can manage the situation much more effectively. That very much applies to hydration. A little bit of thought and practice with hydration strategies can make performance more consistent and training more effective.

 

If you liked this article please like and share. You can sign up to our free newsletter below!

 

Recovery Review: Cryospa!

I recently had the opportunity to have a session in a Cryospa. Cold therapy is nothing new. It is perhaps the most utilized method of recovery in one form or another. Ice baths and ice packs have been used for decades to treat minor and acute injury and help athletes recover from tough sessions. There are now much more advanced forms of cold therapy commercially available. We have many new tools such as cold compression/pump garments and cryospas. The cryospa is very much like an ice bath except it has integrated water jets. This allows for a steady flow of cold water around the body. In the past the water adjacent to the skin would warm up a little with body heat. While a very small factor, this has now been overcome. In addition these jets help add a massage effect into the mix.

First a little theory behind cold therapy. The main mechanism is thought to be vasoconstriction. In reaction to cold stimulus our body constricts blood vessels to reduce blood flow to cold regions of the body. It redirects blood flow through vasodilation back to the core to help maintain core body temperature by reducing the blood’s exposure to cooler temperature. Doing this is thought to help reduce swelling around injuries and also force metabolites in the blood produced from heavy exercise away from the muscle. It is also thought that once the cooled areas begin to warm blood flow is increased as constriction ceases. It is theorized that this returning blood from the body’s core and organs is oxygenated and carries a fresh supply of nutrients to help aid recovery. For this reason cold is often used in conjunction with heat which has the opposite effect of promoting bloodflow.

Cooling the body is thought to help switch the body from sympathetic to parasympathetic. In short it goes from fight mode to rest mode. This should help athletes to relax and sleep after exercise. It will also allow digestion to become more efficient helping refuel the body. This downregulation of the body’s nervous system can be very important in the recovery from exercise as this is when adaptation is most likely to occur.

Ice Baths are one of the most popular forms of recovery.

Ice Baths are one of the most popular forms of recovery.

While there are some solid theories and evidence behind the use of cold therapy there is also some conflicting research. Some argue that cold therapy may interfere with the body’s natural recovery mechanisms. This review will not become a critical analysis but it is important to note there is some valid disagreement in the literature.

In order to get the most out of the session I decided from my own knowledge and opinion that it was muscle soreness I wanted to examine. Soreness from training or delayed onset muscle soreness (DOMS) is extremely common in athletes. In the days prior to the session I decided I would try and induce as much DOMS as possible so I could see how the cryopsa helped reverse or reduce it. I did the things I know cause soreness for me and it was not a schedule I would recommend to anyone. It was designed purely to enduce soreness and not for any training benefit. My training looked like the following.

Day 1- Lower body strength training (Focus on Intensity)

            5X5 Heavy deadlift @85%approx with 2-3 minute rest

            3X 15 Split squat supersetted with Walking lunges with 1 minute rest

            3X Rounds of 5 reps Front squat @50%, 10 Jump squats, 15 bodyweight squats with 1min rest

Day 2- Sprint intervals

            10X 20m sprint walk return rest

            5X 200m with two minute rest

Day 3- 60minute TT cycle with hills.

I was sore after day one but day two and three really built upon that initial session. After the cycle on day 3 my legs felt dead and aching. I felt tight and my glutes and quads had definite soreness moving around. Range of motion was also quite poor due to the tightness. On the afternoon of Day 3 I had my session in the spa.

The spa itself can be filled with epsom salts and magnesium which are also thought to help increase rates of recovery. I was given little neoprene booties to keep my toes from going numb. The water temperature was 4°C. Stepping into the spa was pretty unpleasant as expected. I felt winded and wanted out. This died down after a minute. I was submerged up to waist level but it can also be done with only ankle and knee submersion or all the way up to the shoulders. The whole cycle lasted 10minutes with the jets on full blast. The jets definitely made it feel colder than a standard DIY ice bath.

The spa was pretty user friendly despite the initial shock getting in.

The spa was pretty user friendly despite the initial shock getting in.

When I left the spa my legs were cold and a little numb. As the heat came back into them they definitely felt fresher than when I walked in. Over the course of the day as they heated back up I didn’t really notice any major soreness which was different to before I completed the session. It almost felt like the cycle session was removed from my week in terms of it’s after effects. The dull throb and deadness was gone from my legs and I felt a bit freer moving around. I did feel a little stiff still and there was still a bit of soreness but not quite as bad as before. I would love to have done some performance measure but there is plenty of literature out there and I wasn’t looking to do a full experiment. This was to satisfy my own thoughts and curiosity.

Legs were pretty numb leaving the spa but quickly warmed up.

Legs were pretty numb leaving the spa but quickly warmed up.

The bottom line is I have some doubts on cold therapy as with most things. In saying that I genuinely felt the spa session took an edge off my soreness. If I had full access I would definitely utilize it on a regular basis. This is a very subjective opinion but one cannot discredit the mental impact of recovery. If an athlete feels better and fresher regardless of their actual physiological recovery it is a major benefit.

Different things work for different people and there are tools and methods I simply find useless. The Cryospa is not one of those. I highly recommend trying it or something similar. See how you feel and if it works for you. A lot of being an experienced athlete is trial and error and simply learning your body. A certain amount of individual experimentation is necessary to do so.

I would like to thank Bodyright Physiotherapy (http://bodyrightphysio.ie) and Cet Cryospas (http://www.cetcryospas.com) for the opportunity to try something new. I hope some of those who read this may find my experience useful to them and encourage them to experiment with things for themselves.

If you liked this article please share it and don’t forget to subscribe to our newsletter below.

Recovery Tools: Active Recovery!

Recovery has become a core factor in every athlete’s training and success. There are many recovery methods which can be employed all targeting different things. Not all methods work well for everyone and people will have their favourite. This is normal as the processes of each method are slightly different. Some things will simply have a better effect on certain individuals than others. One popular and convenient method is active recovery. In terms of effect it appears to be relatively beneficial to everyone.

When we exercise we produce metabolic by-products. These by-products can interfere with muscle contractions and contribute to fatigue. While we exercise we have a system to clear these by-products and consume them. When we stop, the rate of clearance reduces and they can be left to accumulate. Eventually they will be cleared up but at a reduced rate. Some gentle exercise post training can help ensure these metabolites are cleared effectively.

When we do more intense muscle contractions where a lot of force is applied, muscle stiffness can occur. Stiffness is when the fibres fail to fully relax causing a temporary shortening of muscle fibre length. Gentle movement can help break up this tension and reduce stiffness. Active recovery can be quite effective in doing this. The submaximal contractions allow the fibres to relax back to resting tension.

Another mechanism it can influence relates to bloodflow and temperature. In order to repair damaged muscle cells after intense exercise they need a good supply of nutrients. This supply comes from the blood. Increasing bloodflow to tired muscles ensures they get a good supply. In addition increasing local muscle temperature can help the muscle fibres loosen up and restore contractile function. Gentle exercise activates the muscle pump which flushes blood through the muscle as it contracts and relaxes.

These three mechanisms have some quite favorable benefits on getting back to top performance in a short period of time. An important factor and one which many people get wrong is when and how to do active recovery. Active recovery first and foremost should not contribute further to fatigue. Intense exercise is not recovery; it is simply another session. Often people perform hard conditioning instead of resistance training believing it promotes recovery. While some aspects may have a similar effect, the benefits are cancelled out by the increased metabolic and cell stress. A reliable intensity to work at is 50-60% of Heart rate reserve. The session need not be any longer than 30mins to be effective. We recommend low load bearing exercise to reduce any further stress on joints etc. Swimming, crosstrainer and biking are excellent choices.

Deciding when to employ active recovery is also tricky. In most cases we should employ some sort of short active recovery in our warm down procedure. This allows us to clear metabolites immediately after a session as well as stabilizing core temperature in a more gradual manner. Some like to use recovery sessions on their day off. In this case promoting bloodflow and reducing stiffness are the main mechanisms. This scenario is problematic as one must refrain from turning recovery into more conditioning work. While for some, running and rowing may be suitable, many heavier athletes will actually induce more fatigue and joint stress using these exercises. A 5k run is not a recovery session it is aerobic training, while less intense it simply applies a different type of stress.

It is important for athletes to understand the purpose of active recovery and the mechanism by which it works. Just because a session is of lower intensity it does not automatically become recovery work. The sole purpose of active recovery is to promote a restoration to a rested state and therefore maximum performance potential. It has a clear purpose and application. Smart athletes recognize the difference and they reap the rewards of using it effectively.