Category Archives: Speed Training

Will cardiovascular training kill strength

One of the most poorly understood interactions in the sport and fitness world is that of cardiovascular training and strength levels. One of the most prevalent misconceptions is that cardiovascular training or “Cardio” will hinder or even reduce strength levels. In particular low intensity, high volume cardio has been touted as a strength killer.  Many will agree with this statement and anecdotally it seems to hold a lot of truth. Then we look at field athletes such as rugby players for example. Some have pretty impressive strength levels as well as excellent cardiovascular conditioning. How do they achieve this if the training methods counteract each other? In addition why do so many scientific studies with tight control and experimental design show conditioning to be improved alongside strength and power? There are similar misconceptions of strength in the endurance world. Endurance athletes believe strength training makes them slow and bulky.  How can so much confusion and mixed opinions exist in this.


The answer all comes down to one simple factor -Load! When we use the term load we are not referring to load as a weight, we refer to it as external stress. In this case the stress is training volume or overall training load. Typically cardiovascular training, especially the low intensity variety, is done in high volume to have effect.  Large volumes of training have high energy demands. These demands can be hard to meet nutritionally. In addition to this, large volumes of training can accumulate considerable microtrauma and damage to muscle cells. In practical terms there is an accumulation of fatigue.


If one wishes to increase or maintain strength levels one must train to the upper limits of one’s current ability. The neuromuscular system improves when its current capacity is placed under higher demands than it is capable of meeting. Over time and consistent stimulus it responds and adapts becoming more efficient. This is the basis of a strength program. Progressive overload is the simplest mechanism for adaptation.


An athlete must lift enough to elicit adaptation and increase strength.

An athlete must lift enough to elicit adaptation and increase strength.

When we train while fatigued it has obvious implications for what can be achieved. One will simply not be able to reach a level of intensity that would be considered maximal or required for any real stimulus. In short we cannot train hard enough to push our limits. With the result that the mechanism of progressive overload is never achieved as we remain well within our limits. Not being able to train maximally or at our upper limits will make it extremely difficult to see any improvements in absolute strength. In addition, prolonged periods of training in which we fail to reach intensity will result in detraining. If we don’t use it we lose it. We can lose strength as we don’t really get to the point where it is stressed.


Large volumes of cardio training take up a lot of time in our schedules. Larger volumes have been shown to be very effective in terms of improving cardiovascular conditioning. The issue is allowing enough time in a week to complete cardio, recover and then train strength. If it is not scheduled carefully there is bound to be latent fatigue when going into the subsequent training sessions. This is where issues arise and cardio begins to have a negative impact on overall training effectiveness.


Another argument is that physiologically the adaptations of cardio training counteract those of strength training. This is usually the argument used to explain why cardio kills strength. In reality the structural adaptations are largely defined by genetics. Smaller people tend to suit endurance sports just like larger individuals are suited to power type sports. Yes there is some influence of training but generally speaking we naturally sort into the sports we are suited to at a young age. Our size will influence our success in a given sport and there’s not much an individual can do about it. Larger people can be very well trained cardiovascularly but must move more mass and therefore tend to be slower as a result. Likewise smaller endurance athletes can be very strong pound for pound but will simply lack the mass to shift heavier weights. This is a major reason for weight categories in strength sports such as weightlifting.

Successful distance runners are physiologically suited for the sport. They have lighter rangier frames. Perfect for covering distance efficiently.

Successful distance runners are physiologically suited for the sport. They have lighter rangier frames. Perfect for covering distance efficiently.


In short genetically we are predisposed to certain characteristics which fool us into thinking the type of training we do is the reason for our abilities or weaknesses.  When looking at concurrent training the main factor that influences our improvements is fatigue. If training is carefully planned and one does not overtrain a capability or underecover from sessions, we can improve both simultaneously. Looking practically it is a lot easier to focus on one or the other but this is not always a possibility.


The point of the article is to highlight the fact that one can train strength and cardio simultaneously and see improvements in both. Strength can go unhindered and endurance can be improved with increases in strength. Poor understanding of the relationship between the two has led many individuals to neglect their conditioning in favor of strength or vice versa. When planning a training program one should consider the length of time it takes to recover from different training types. Progress will be ensured if one considers the differing timescales of recovery and appropriate training stimulus needed to promote adaptation. When this is accounted for concurrent improvements in both strength and cardiovascular conditioning are very achievable.


Sign up for updates!


Will bulking up slow me down? Not if you do it right!

Manu Tuilagi

This is a dilemma faced by many athletes in many sports. The debate relates to an increase in body mass and its impact on the speed of the athlete. Traditionally heavy athletes are considered slow but strong. Light athletes are considered quicker and more nimble but lack mass which is beneficial in contact. In the modern era of sport, athletes are statistically bigger and faster. It seems our traditional thinking is being proven wrong.

When we think of speed we usually are thinking of a mixture between the ability to change direction quickly and top speed. They are closely linked but not the same. Change in direction involves both deceleration and acceleration. Top speed is more a case of overcoming braking or decelerative forces. In both examples the rate of force development is key. The more force one can produce the more they displace their mass, the more they move. Strength is required to produce force but also to control deceleration. Stride rate has been shown to have little impact on top end speed. Stride length however, has a great impact.

Athlete’s strength levels tend to have a narrower range than their bodyweight. This means that lighter athletes will tend to have a better relative strength to weight ratio. This generally translates into them being quicker. In recent years, bigger athletes have begun to demonstrate similar levels of speed and agility. They also show greater strength levels. One important factor in strength to weight ratio is lean body mass. Bodyfat contributes little to the generation of force yet will contribute significantly to decelerative forces. Therefore excess body mass in the form of fat will have a negative impact on speed.

Gaining mass is traditionally accomplished using high volume weight training to induce muscle hypertrophy. Programs which aim purely at achieving hypertrophy tend to promote modest strength improvements. Athletes may put on extra mass over the course of a short offseason. They then feel sluggish when they return to competition. This is often because their relative strength to weight ratios have become less favorable.

In some very rare cases there is structural influence in the muscle mass which can inhibit the rate of muscle contraction. Muscle fibres contract through the sliding filament theory. This sliding of fibres creates friction. The more muscle filaments the more friction. Friction reduces rate of contraction. Rate of contraction is very important when we need to produce power. This has only been witnessed in a handful of circumstances where specific muscle groups may be overdeveloped. Track cycling is one such sport where this can occur from time to time.

Robert Forstemann, some of the biggest legs in sport

Robert Forstemann, some of the biggest legs in sport. Despite his enormous quadriceps he is still one of the fastest track sprinters in the world.

So the question is, how is it possible to increase mass and maintain functional speed on the field of play. Simply put the key factor is time. An athlete who gains mass over a longer period will be able to spend time keeping other capabilities at a relatively similar level. Speed strength and neural training can be implemented ensuring these also develop. These are key components in the rate of force production. A program which cycles between short blocks of training, gradually developing each capability will achieve the goal. This is known as periodization. An athlete could also train all three capabilities in the same training block, but would witness more modest improvements.

Most of the time losing speed when bulking up is a result of doing things too quickly. Athletes may gain 3-5kg in a three month period with little emphasis on pure strength or speed. They have the new mass but have not yet trained to carry it on the field. Often they panic and attempt to lose the weight again. This means they never have a chance to train to their new potential. This usually promotes a reluctance to attempt to increase mass in the future.

In summary gaining weight will only slow an athlete down if the weight gained is in the form of fat. Initially they may lose speed only if their rate of mass increase exceeded their rate of strength improvements. Some top sprint coaches suggest that a sprint athlete would need to be able to back squat twice bodyweight before they will reach full potential. Hypertrophy style rep schemes are also not typically associated with neural improvements. Neural training in the form of speed strength style training is essential to maintain fast rates of muscle contraction.

Obviously speed is a skill and technique in sprinting and change of direction is important. The issue is that athletes tend to want things quickly. They focus on one thing while neglecting another. Genetically we are predisposed to be big or small, fast or slow. We rarely give a whole lot of time to our weaknesses as it distracts from our strengths. If athletes are a little more patient and approach things with a patient and diligent attitude then they tend to be more successful in the long run. Many athletes do not have the technical skill mastery to reach their potential to begin with. In this case they cannot blame their body mass.



Ma’a Nonu at 100kg+ has little issues outrunning defenders significantly smaller than him.

The conclusion is that there are many aspects of increasing body mass which can have a negative influence on speed. Despite this, increased muscle mass can improve power output through increasing force production capabilities. If they support these changes with a period of speed strength and neural focus training then they should see no major loss in speed. It is difficult to achieve dramatic changes in body mass without it having an impact.

Athletes must weigh up the benefits, versus the time in which they have to make changes. At some point size will have a detrimental influence but most athletes never get close to this point. Athletes who fear that they will get slower should be assured that this is rarely the case when their training is appropriate and gradual.


Please subscribe for free to get notifications of new posts and bonus articles!

Thank you!

Why we like the Clean Pull

Most Strength and conditioning programs will utilize an exercise which develops the triple extension. The triple extension is comprised of the ankle, knee and hip joints extending in unison. This movement is common in the vast majority of sports and athletic movements. For that reason it is obviously a good idea to try and develop it. Possessing a powerful triple extension will allow an athlete to run faster, jump higher and hit harder. There are many exercises that can develop a powerful triple extension. The clean and snatch are two very popular choices along with most forms of jumping exercises. One exercise which is perhaps less popular but just, or even more effective is the clean pull. (See Below)

The clean pull is the first and second pull portion of the clean. It can also be performed with a snatch grip to create the snatch pull. We like the clean pull because it possesses all the beneficial aspects of both the clean and snatch while significantly reducing technical demands. The first and second pull movement can take quite some time to teach and become proficient at. Often athletes don’t have time in their schedule to focus on technical skills or a lift which is not their chosen sport. For that reason we want to get the benefit from an explosive triple extension movement but do not always have the time to teach it up to a level where it contributes to performance. In addition to time constraints Olympic lifts such as the clean and snatch require mobility and strength in some joints which some athletes do not possess.

Athletes can build massive amounts of power and force generating capacity while reducing injury risk. Many programs will incorporate cleans and power cleans as the benefits of these are well established. The issue is that unless the athlete has reasonable technical skill and mobility, there is a tendency to cheat the exercise. This is especially true where load is seen as a priority. Its benefits can be significantly reduced when this occurs. The clean pull allows athletes to move high loads in a relatively safe fashion. It eliminates a portion of the clean which many athletes have difficulties with.

Recommending an exercise because it is easier or less technical is not something that I’d normally recommend. The reality is that in many scenarios athletes can waste time on things which in the grand scheme of their training are unproductive. The clean pull is a fast and efficient way to develop power in an athlete. It can be used in many circumstances where the clean cannot. One such example is during season in contact sports where athletes regularly pick up minor sprains and strains. The wrist and shoulders are extremely common areas to suffer. This often eliminates many lifts which require athletes to catch overhead or even in front rack position.

In addition to them being a good alternative they can also be a great supplemental exercise. Athletes can often handle heavier loads when performing the clean pull vs. the clean. Building good strength in this portion of the lift can contribute significantly when cleans are then performed in full.

While we don’t suggest avoiding Olympic lifts they are not always necessary or suitable. They should be performed for an established reason and not because they are popular. Many athletes struggle with them and see little benefit. Clean pulls provide an excellent alternative in many scenarios. We firmly believe that the components that make up every program should have purpose. Clean pulls build a very powerful triple extension easily, safely and effectively. This is why we like them.

Science of strength!

In this post I will discuss the physiological components that make up physical strength. In general the strength of a muscle is determined by its cross sectional mass. When we assess the improvement of strength in a muscular contraction, we see a significant increase in force output in a short space of time with no change in mass. This shows us that there is also a neural component that plays a significant role in strength. In order for a muscle fiber to hit a peak contraction it must be stimulated fully. A beginner to strength training will be unable to reach his true max because he will be neurally untrained. This means he is not capable of using all his muscle fibers or even capable of using the select few to their full potential.

When we want to move, we send a chemo-electrical signal from brain to the muscle which results in a contraction. The more signals we send the more forceful the contraction. In order to achieve maximum contraction we must have a constant and rapid train of impulses coming from our brain. The route the impulse takes down the nerves must be capable of sustaining and transmitting these signals. Early in our training it is these nerves which improve at delivering stimulus, that results in strength improvements.

There are several factors which can prevent us achieving maximum contractile forces. We have safety mechanisms which prevent us reaching our limits in order to prevent damage to our muscle tissue. These mechanisms are largely involuntary and are not simply a case of pushing harder. When we train the thresholds for these “safety switches” raise, allowing us to lift more. This is partly because our muscles become more conditioned and less susceptible to damage but also because our overriding mechanisms improve. We can prove this theory by using a simple maximum voluntary contraction test on a muscle. An athlete produces their strongest contraction and when it peaks we add extra stimulus externally with an electric impulse. The peak will increase significantly higher than voluntary stimulus could achieve, proving there is more force possible.

So how do we increase strength? There a couple of areas which can be improved. First we need to train the movement. Becoming more accustomed to the movement helps us learn the pattern of muscle activation required to perform the action effectively. Second we must improve stimulation and muscle activation. The obvious method is working closer to our maxes which in theory requires a “close to max muscle contraction”. Become accustomed to producing maximum force will improve the mechanisms involved over time. This can be taxing on both the central nervous system (CNS) and the muscle structure itself. It will require structural recovery which takes time. Speed training is an excellent variation as it allows us to improve the rate of impulses coming from the brain. More ballistic type exercises such as jumping are a good way to improve rate of neural transmission. Adding bands or chains to sub-maximal weights for particular lifts can also be another variation to include. The increased resistance over the range of the movement requires an accelerated contraction.

Adding chains can be very effective at improving neural components involved in strength. Photo source:

Adding chains can be very effective at improving neural components involved in strength. Photo source:

These types of training are excellent ways to improve the neural component of strength without needing any structural recovery. They are demanding on the CNS and as always adequate recovery is necessary. The next area to work on is increasing muscle mass. This involves hypertrophy of the muscle fibers which occurs over a much longer period of time.

Becoming strong is important to all athletes but understanding what makes them strong can be just as important. The body adapts quickly and so a multidirectional approach can help progress in terms of consistency. Often athletes employ the maximal lifting approach exclusively and plateau quickly. Combining different methods over a periodised training plan can make sure that an athlete continues to improve in the long term and achieve full potential.

Post Activation Potentiation

Also referred to as a PAP response, Post Activation Potentiation has been a tool in an athletes training arsenal for decades. The basic theory is that if you lift a heavy weight you can perform a more explosive contraction soon after. So for example you might do a heavy double on back squat. Immediately after you may do box jumps or something similar and exceed expected performance. The underlying mechanism explaining this is actually quite simple. When you perform a heavy lift or contraction you must activate larger motor units to produce a more forceful contraction. These larger motor units are often referred to as type 2 muscle fibers. These fibers are generally larger and have greater capacity to produce force than smaller fibers. When activated they become slightly more sensitive to further activation for a short period of time after. When you go to perform the next contraction it will be relatively easier to produce force as these motor units are “excited”. Due to changes in sensitivity, the rate of contraction may also be significantly improved. This allows for a better power production overall.

Not a bad example to use. Photo by Hookgrip at

Not a bad example to show. Big lift allows for a big jump!  Photo: Hookgrip at

Not only can this PAP response be useful for improving power, it can also help improve strength endurance. I use the term endurance loosely there. It may allow you to perform more reps at sub-maximal loads without directly influencing fatiguing factors. For example, max repetition bench press is a common test used by many contact sport teams used during team physical testing. One or two singles close to max effort prior to the test can in fact improve the result. This is provided that the athlete does not go overboard and induce fatigue prior to the test. Often the athletes state that the weight initially feels lighter in comparison to a standard work up, warm up protocol. The PAP response can also be used in a hypertrophy program where back off or drop sets are being utilised. This is quite simply due to larger motor units being pre-activated, making a more effective use of available motor units, resulting in an improved performance. Larger volume in terms of weight lifted per session translates well into these types of programs.

While this is not a new concept or theory, the underlying mechanism is often overlooked and therefore under utilised. It is quite an effective tool and one which I have seen positive results from. Having an understanding of this concept allows a coach to be a little more creative in finding ways to help an athlete reach their potential.