Category Archives: Injury prevention

Warning signs of over reaching.

Dealing with a large number of athletes shows a huge amount of variation and diversity. Lifestyle and physiological factors are totally different from one athlete to another. Depending on lifestyle, an individual can have stress coming from any direction. Work, study, family, training, finance and competition are just a few of the factors that can cause stress. When an athlete trains they create stress. Normally this stress elicits a positive adaptation. An individual will recover to a point that is greater than before and they see progress. This is the basis of the General Adaptation Syndrome (GAS) theory. If one does not recover they will not improve. If they continue to put their body under stress they will eventually begin to breakdown and see a loss of ability.

 

There are many warning signs of under-recovering. These often precede overtraining and can help one avoid getting into that situation. Overtraining, depending on the severity, can take weeks to months to reverse. That may be long enough to destroy a performance and potentially a career. It is important that an athlete be aware of the warning signs and monitor themselves to avoid overtraining. Many of these signs are well documented but others not so much. Tiredness, resting heart rate and loss of performance are the typical and most obvious indicators of over doing things. A certain amount is okay and when followed by adequate recover one can see great adaptation. Overreaching is a less severe version and can be quite beneficial when planned for appropriately. The issue is that some athletes will push the boundaries here. Some believe they are capable of more than they are and can often do themselves a disservice as a result.

 

It is extremely common for athletes to ignore tiredness and continue to build training volume. They also have a tendency to increase volume when they see a dip in performance as it is the most obvious solution to them. This creates an environment for them in which overtraining can easily occur. When monitoring for overtraining it is important to look for some less obvious signs. Some pretty common things can be used as warning signs.

1) Mood swings.

Changes in mood or personality are pretty obvious signs of stress. The term “hangry” has become a buzz word around athletes. When an athlete undereats or skips a meal they often become quite narky and sensitive. Being hungry can make some athletes appear angry. This “Hangry” state can highlight that their management of nutritional factors is poor. In addition when athletes undereat they can appear to be mildly depressed. In some cases teary and emotional athletes can highlight they simply are not eating enough to recover fully. Lightening training load and a few solid meals can produce have a massive impact on an athletes mood and personality.

Loss of motivation or being unusually moody can be a sign of fatigue

Loss of motivation or being unusually moody can be a sign of fatigue

2) Minor Illness

If an athlete is constantly coming down with common colds and “sniffles” it can be an obvious sign their body is dealing with stress. If training loads are high and they are not recovering fully the immune system becomes suppressed. Undereating for training can create this scenario pretty quickly and what is considered a common occurrence depending on time of the year may actually be a sign of things being out of balance.

3) Irregular Periods

For female athletes, particularly those in endurance sports, this can be a very obvious indicator of stress. Athletes experiencing irregular or missed periods should seek medical advice to rule out underlying conditions. In many cases high energy demands and poor nutritional management can be the cause.  Excessive stress either physically or emotionally can also be a cause. Menstruation can be an excellent indicator of overall wellbeing and balance between stress and recovery.

4) Aches and pains

Some amount of pain is normal and common for athletes training intensely. However, constant aches, pains and tightness can be a sign that they are placing the musculoskeletal system under too much stress and volume. Without adequate recovery it remains in mildly damaged state. Tension can also build up in the muscles if not allowed to recover fully. New training programs and sudden increases in volume can create a little bit of discomfort short term but if it persists it may be a sign that rest is needed.

These signs are extremely common and often pretty sensitive to training and stress induced through daily life. What is important to remember is that progress is the number one goal. If an individual does not recover then they are simply wasting time and effort. Keeping a close eye on the above factors can give them a very tight accurate control over their bodies. They can be smarter and more efficient athletes if they take advantage of these indicators and learn their bodies. Successful athletes will have a great knowledge of their body and how it reacts to lifestyle and training influences. If any athlete is concerned about anything discussed it is always wise to seek medical advice to ensure there are no underlying problems. Be aware that many ailments can give clues as to how the body is coping. In many cases they can be used to an athletes advantage when they are typically seen as a nuisance.

 

If you liked this post please like and share. Follow our newsletter below for updates.

 

Recovery Review: Cryospa!

I recently had the opportunity to have a session in a Cryospa. Cold therapy is nothing new. It is perhaps the most utilized method of recovery in one form or another. Ice baths and ice packs have been used for decades to treat minor and acute injury and help athletes recover from tough sessions. There are now much more advanced forms of cold therapy commercially available. We have many new tools such as cold compression/pump garments and cryospas. The cryospa is very much like an ice bath except it has integrated water jets. This allows for a steady flow of cold water around the body. In the past the water adjacent to the skin would warm up a little with body heat. While a very small factor, this has now been overcome. In addition these jets help add a massage effect into the mix.

First a little theory behind cold therapy. The main mechanism is thought to be vasoconstriction. In reaction to cold stimulus our body constricts blood vessels to reduce blood flow to cold regions of the body. It redirects blood flow through vasodilation back to the core to help maintain core body temperature by reducing the blood’s exposure to cooler temperature. Doing this is thought to help reduce swelling around injuries and also force metabolites in the blood produced from heavy exercise away from the muscle. It is also thought that once the cooled areas begin to warm blood flow is increased as constriction ceases. It is theorized that this returning blood from the body’s core and organs is oxygenated and carries a fresh supply of nutrients to help aid recovery. For this reason cold is often used in conjunction with heat which has the opposite effect of promoting bloodflow.

Cooling the body is thought to help switch the body from sympathetic to parasympathetic. In short it goes from fight mode to rest mode. This should help athletes to relax and sleep after exercise. It will also allow digestion to become more efficient helping refuel the body. This downregulation of the body’s nervous system can be very important in the recovery from exercise as this is when adaptation is most likely to occur.

Ice Baths are one of the most popular forms of recovery.

Ice Baths are one of the most popular forms of recovery.

While there are some solid theories and evidence behind the use of cold therapy there is also some conflicting research. Some argue that cold therapy may interfere with the body’s natural recovery mechanisms. This review will not become a critical analysis but it is important to note there is some valid disagreement in the literature.

In order to get the most out of the session I decided from my own knowledge and opinion that it was muscle soreness I wanted to examine. Soreness from training or delayed onset muscle soreness (DOMS) is extremely common in athletes. In the days prior to the session I decided I would try and induce as much DOMS as possible so I could see how the cryopsa helped reverse or reduce it. I did the things I know cause soreness for me and it was not a schedule I would recommend to anyone. It was designed purely to enduce soreness and not for any training benefit. My training looked like the following.

Day 1- Lower body strength training (Focus on Intensity)

            5X5 Heavy deadlift @85%approx with 2-3 minute rest

            3X 15 Split squat supersetted with Walking lunges with 1 minute rest

            3X Rounds of 5 reps Front squat @50%, 10 Jump squats, 15 bodyweight squats with 1min rest

Day 2- Sprint intervals

            10X 20m sprint walk return rest

            5X 200m with two minute rest

Day 3- 60minute TT cycle with hills.

I was sore after day one but day two and three really built upon that initial session. After the cycle on day 3 my legs felt dead and aching. I felt tight and my glutes and quads had definite soreness moving around. Range of motion was also quite poor due to the tightness. On the afternoon of Day 3 I had my session in the spa.

The spa itself can be filled with epsom salts and magnesium which are also thought to help increase rates of recovery. I was given little neoprene booties to keep my toes from going numb. The water temperature was 4°C. Stepping into the spa was pretty unpleasant as expected. I felt winded and wanted out. This died down after a minute. I was submerged up to waist level but it can also be done with only ankle and knee submersion or all the way up to the shoulders. The whole cycle lasted 10minutes with the jets on full blast. The jets definitely made it feel colder than a standard DIY ice bath.

The spa was pretty user friendly despite the initial shock getting in.

The spa was pretty user friendly despite the initial shock getting in.

When I left the spa my legs were cold and a little numb. As the heat came back into them they definitely felt fresher than when I walked in. Over the course of the day as they heated back up I didn’t really notice any major soreness which was different to before I completed the session. It almost felt like the cycle session was removed from my week in terms of it’s after effects. The dull throb and deadness was gone from my legs and I felt a bit freer moving around. I did feel a little stiff still and there was still a bit of soreness but not quite as bad as before. I would love to have done some performance measure but there is plenty of literature out there and I wasn’t looking to do a full experiment. This was to satisfy my own thoughts and curiosity.

Legs were pretty numb leaving the spa but quickly warmed up.

Legs were pretty numb leaving the spa but quickly warmed up.

The bottom line is I have some doubts on cold therapy as with most things. In saying that I genuinely felt the spa session took an edge off my soreness. If I had full access I would definitely utilize it on a regular basis. This is a very subjective opinion but one cannot discredit the mental impact of recovery. If an athlete feels better and fresher regardless of their actual physiological recovery it is a major benefit.

Different things work for different people and there are tools and methods I simply find useless. The Cryospa is not one of those. I highly recommend trying it or something similar. See how you feel and if it works for you. A lot of being an experienced athlete is trial and error and simply learning your body. A certain amount of individual experimentation is necessary to do so.

I would like to thank Bodyright Physiotherapy (http://bodyrightphysio.ie) and Cet Cryospas (http://www.cetcryospas.com) for the opportunity to try something new. I hope some of those who read this may find my experience useful to them and encourage them to experiment with things for themselves.

If you liked this article please share it and don’t forget to subscribe to our newsletter below.

The warm-up and performance!

A winning team or athlete will undoubtedly want to achieve two things every session. One, perform at their best for that given day and two, prevent any injury occurring. With this in mind athletes are paying more attention to their warm-up procedure as the impact of an effective warm-up has shown to play a significant role in achieving those goals. Competition tends to encourage us to find an edge or advantage over our competitors. In some cases this allows us to be innovative and improve, in others it creates distractions. The warm-up has become a monster in some cases. It is not uncommon for some teams and individuals performing excessive warm-up protocols which show more harm than benefit.

Quite recently I attended a rugby tournament and witnessed the warm-up routines of other teams. One such team’s warm-up lasted from the time we left our team bus to the kick off of our first match. A period of about 90mins. They had a wide arsenal of stretches, mobility drills and activation exercises. They also had 21 points scored against them in the first ten minutes of the game by the tournament’s wildcard entry. In my opinion they missed the point of the warm-up, which was to prepare them for the game.

An effective warm-up will prepare you for the task ahead. In order to be effective an individual or team coach must identify what they are preparing themselves for. The following will discuss the main components of a warm-up. By understanding what is needed one can structure a warm-up that is fit for their purpose.

Body temperature

This is the main priority of the warm-up. By increasing core and muscle temperature we elicit a wide range of responses which have been proven to improve performance. 1° C increase in muscle temperature from resting is associated with approximately a 4% increase in power output. The ideal temperature being approximately 37.5°C. Excess of this will likely have detrimental effects. The most effective way to increase warm-up is to perform moderate full body exercise (Approx 80% of lactate threshold) for 5-10mins depending on environmental factors. This increase should level off after approximately 15mins in normothermic conditions. Optimal muscle temperature allows for faster nerve transmission and muscle contraction.

 

Even endurance sports benefit from an effective warm-up

Even endurance sports benefit from an effective warm-up

Cardiovascular

When we begin to exercise our cardiovascular system reacts. Blood vessels dilate and constrict to direct more blood to working muscle and away from inactive muscle and organs. Increases in heart rate also allow for increased cardiac output and blood supply.

Joint mobility and flexibility

Activity and movement reduces viscosity of synovial fluid in the joints which act as a form of lubricant. In addition, stretching may be utilized to promote elasticity of muscle fibres. Some theorize that this can prepare the muscles for rapid loading and increase ranges of motion (ROM), reducing the possibility of injury. Some have argued that increased range of motion may be problematic for joint related injury depending on the nature of activity to follow. It is wise to exercise caution with the use of stretching prior to exercise. Foam rolling has also become a popular method to promote muscle elasticity and ROM. It has shown little evidence for increasing performance where ROM is not a limiting factor. Mobility drills may also be used to promote ROM but have again shown little evidence for promoting performance where issues with ROM are not present. In short unless there is tightness or an issue with mobility it is not essential.

Dynamic stretching may offer a more beneficial alternative. Basic drills can be used which closely replicate movements required during competition. Increased specificity will prepare the athlete more appropriately for their sport.

 

Stretching should be used appropriately in a warm-up routine.

Stretching should be used appropriately during a warm-up routine.

 

Post activation potentiation (PAP)

Leading on from the previous point, an effective warm-up will also provide some PAP response. This can be read about more in a previous article here https://hamiltonsport.com/2015/01/post-activation-potentiation/. Some basic ballistic style movements and dynamic stretching can provide this. It is wise to do this following the temperature increase portion of the warm-up. Some progressive bounding or jump type movements are appropriate in most cases. This may increase nervous system activity which can allow for better contractile function of the muscle. This can improve force output and reaction times.

Competition specific

Technical drills should be used to prepare the athlete mentally for the tasks they must perform. Including some technical, skill focused drills will allow for further warm-up physically which will be specific to the tasks they must perform.

 

Warm-up drills should also prepare the athlete for contact.

Warm-up drills should also prepare the athlete for contact.

 

The recommended order of warm-up should look like this.

  • Temperature ramp (Also covers cardiovascular preparation)
  • Mobility and dynamic stretching (Covers PAP response)
  • Competition specific

A full warm-up should last between 15 and 30 mins depending on the sport. It is important that the athlete’s warm-up is as efficient as possible and wastes little time. The warm-up is not the time to address mobility or flexibility issues. These should have dedicated time given to it. A warm-up is preparation for the task. I feel that far too much time is given to mobility drills and foam rolling and these have become the core of many warm-up routines. The popularity of movement as a performance variable has allowed some to go overboard and neglect other aspects of their preparation. The main priority is getting the desired increase in body temperature, especially in colder environments. It must also be noted that warm-ups should be performed as close to the event as possible and great care should be taken to maintain body temperature if there are periods between the cessation of the warm-up and the start of competition.

These are the core components of an efficient warm-up. The exact drills and procedure will depend largely on the sport itself. If your warm-up is lacking any of these components then it would be very beneficial to look at ways of adding them in. In summary a warm-up should be time efficient and fit for purpose. It should have both a general and specific portion and should always look to establish optimum body temperature. Too many mobility drills may distract the athlete from purpose and would be better placed in a training session dedicated to addressing mobility issues. It takes a little experimenting to find a balance between effort, time and effectiveness. If exercises are too intense fatigue can become an issue. It is always best to establish protocols outside competition first to avoid any issues on the day.

If you have any questions or concerns about your warm-up then do not hesitate to contact us.

Please remember to subscribe below to receive free notifications and VIP content and if you liked this article please share with a friend.

 

The importance of weight training in-season!

In the professional era of sport the competitive season has become longer and athletes get very little rest. The modern athlete is not comparable physically to athletes ten years ago. Modern sport science and recovery techniques continue to drive the physical capabilities of athletes forward. The modern athlete is heavier, leaner, stronger, fitter and faster than ever. Most of this comes from the continuous development of training techniques but also because of the expectations on the athlete. A professional athlete works full time. When they are not on the pitch doing skill work they are in the gym. When they are not in the gym they are in the kitchen or in the treatment rooms of physiotherapists recovering for the next session. This is the way sport is in the modern era. Those who don’t keep up will be left behind.

Youth athletes nowadays train almost as hard as the professionals. The training age and physical maturity of most youth athletes is way ahead of where it was in the past. Schools players are more driven and better coached and their physical development is much more advanced. The level of competition in schools has developed these young athletes from quite an early age. With the result that younger athletes are coping with higher training volumes and demands than ever before. See  https://hamiltonsport.com/2015/04/13/training-age/

When we look at a competitive season in most sports there is quite a short off-season. Traditionally most athletes would look to further their physical development in the off-season. In the past this may have been as long as four months. Now many athletes have no off-season or maybe only a number of weeks. This means that for many to continue to develop they must do so in-season. Recovery is the main concern with this. Tired athletes become slow physically and mentally and performance suffers. Modern technology and sport science has allowed us to monitor athletes much more closely so we can be more accurate with training. Athletes can now train just enough to elicit adaptations without hindering performance.

Good coaches monitor their athletes efficiently and in a manner which allows them to adjust training very easily. By analyzing the athlete’s performance on a number of indicator tests they can see how fatigued the athlete is. There are many techniques, from RPE rating and verbal feedback to countermovement jumps and barspeed analysis. Most coaches understand how important it is to be flexible with training and know when and what to change. Often an athlete will come into the gym expecting to lift weights but instead be given a simple mobility routine. It all depends on the monitoring and fatigue management protocols adopted by the training staff. Professional sport utilises monitoring to ensure athletes are always in the phase of training that is planned in accordance with the season goals and performance priorities.

Many believe weight training to be something which cannot be completed during the season as it fatigues athletes and slows them down. This is not always the case. When used appropriately weight training can actually be used to excite the nervous system leading to an improvement of contractile function. This means it can actually make an athlete faster for a short period of time after the session. This is known as a PAP response which you can read more about here. www.hamiltonsport.com/2015/01/31/post-activation-potentiation/

Because of the length of some seasons and competitions in relation to the off-season or rest periods, it may be necessary for an athlete to train to maintain abilities. Athletes typically begin to lose some motor capabilities after about 10 days. If they do not continue to train, the ability slowly fades away. However, it takes approximately 40% of original training load to maintain their conditioning. Continuing to train albeit at a reduced level will allow them to stay at their potential throughout a season which may last up to 10 months in some cases without a break. Waiting this long to get back in the gym would literally put a player back a full season in terms of their physical development. For younger players this would have massive implications on their career.

In addition to physical development, in-season training plays a major role in injury prevention and game preparation. Often during long seasons athletes build up imbalances which, if not corrected, can develop into chronic and acute injuries. Maintaining some strength work focused at developing a balance of strength and movement can be a very effective preventative measure.

Maintaining and S&C program is essential for most modern teams especially when some players may be called up for international duties. Leinster Rugby Imagery. Picture credit: Dáire Brennan /

Maintaining an S&C program is essential for most modern teams especially when some players may be called up for international duties. Leinster Rugby Imagery. Picture credit: Dáire Brennan

In modern sport a squad extends wider than a starting team. Subs and reserves play a much more active role as game intensity increases. At a moments notice a player may be expected to start when they may not have had game time in several weeks. The only way to prepare them may be to simulate some of the physical demands of the game in a gym setting. It is essential for all squad members to be ready to play at match intensity despite not getting adequate match time. The strength and conditioning program is extremely important to these players.

In conclusion, modern sport is rapidly developing. The physical capabilities of most athletes are also developing. There are larger demands on the athletes in terms of the amount of training required to be competitive. Fortunately modern science has allowed us to support this development. We understand the body much better nowadays. We need to embrace change and learn what we are capable of achieving. This won’t happen if we sit, wait and just rest all the time. Athletes are more motivated than ever and understand that professional sport is a full time job. Progress is essential and they and their coaches will be doing everything possible to ensure it continues. In-season strength and conditioning is now an essential component in the success of a team or athlete.

Hamstring savers!

The hamstring is a major risk area for many athletes. Hamstring strains and tears are possibly one of the most common soft tissue injuries amongst sportspeople. The most common presumption amongst athletes when they suffer from hamstring issues is that it’s a flexibility issue. Not an outrageous assumption but often not the problem. Many athletes spend a considerable amount of time stretching and foam rolling etc. to improve flexibilty in hopes of preventing issues with little success. While there are qualified medical professionals to provide information on the epidemiology of hamstring injuries we will focus on what can be done in your training to help.

In terms of flexibility we have often seen athletes with excellent flexibility strain a hamstring. Our first thought is to examine the warm-up protocol. A good warm-up should improve elasticity within the muscle fibres and reduce the chances of injury. Even with an extensive and effective warm-up the same players seem to be susceptible to the same injury. Eliminating flexibility and warm-up from the list of causes has led to another much less discussed issue which could be the cause.

Muscle imbalance is often associated with small stabilizer muscles but can also be present in much larger muscle groups. When an athlete has got good overall strength, muscular imbalances can be hidden. This is especially true for the lower body. Most strength programs will have a squat type movement. It is an excellent full body exercise. When time restrictions are present in training it is often used as the sole lower body exercise. For many athletes this is not an issue and they see great overall development using the squat on its own. Some however, develop a technique which utilizes the Quads and Glutes much more so than the hamstring. They can lift heavy loads and so we assume they are strong even though the hamstrings may not be doing nearly as much work as they should be. When these athletes sprint they have great power generated from quads and glutes but the hamstrings are lacking. This weak link is where the break in the chain occurs.

In order to prevent injuries athletes should make sure they develop all the muscles involved in the movements they perform. This sounds obvious but can often be hard to achieve. There are several strategies one can employ. Firstly using a unilateral exercise in addition to the squat can help fill in the gaps. Adding a lunge or step-up type movement can be a major benefit and is highly recommended. It puts an athlete in a different movement plane which is often more movement specific and utilizes more appropriate muscles and activation patterns.

The second approach would be to train the temperamental muscles directly. Most good strength programs will have a hamstring orientated exercise present, owing to the high prevalence of hamstring injury in athletes. The concern here is the execution of such exercises. Again alternative muscles can take over and hamstrings can still be neglected. Exercises such as Romanian Deadlift (RDL or Stiff Legged Deadlift), Glute-ham raises and Reverse Hyperextensions are all popular hamstring exercises. It is very common for these to be performed incorrectly. Athletes with strong lower backs can easily perform these movements with high load and work around the hamstrings. Obviously the first recommendation is to make sure they are being observed carefully to ensure proper technique. In a team training scenario this is not always possible or effective.

In efforts to overcome these issues and protect the hamstrings a solution is needed. The Nordic hamstring curl may be the answer. It is extremely hard to cheat on this exercise and it will promote excellent hamstring activation. Using a slow or even paused eccentric phase, the hamstrings cannot hide. It is relatively easy to instruct and needs very little equipment. Often an athlete with enormous deadlift strength will be humbled by this simple bodyweight exercise. For that reason it should be high on the list of priority exercises. It can be easily scaled for athletes from beginner to elite level. Research has also suggested it to be quite an effective tool. The preventive effect of the Nordic hamstring exercise on hamstring injuries in amateur soccer players – a randomized controlled trial, Van der Horst, Smits, Petersen, Goedhart, and Backx, in Injury Prevention (2014).

Often injury prevention is a little like detective work. The obvious answer is not always correct and the solution is not always clear. Ensuring an athlete has strong well developed hamstrings can be the missing piece of the puzzle. Hamstring injuries can be both debilitating and frustrating. The level of recurrence can be quite high. There are a number of considerations which have been discussed which should be considered when constructing an effective strength program.