Tag Archives: metabolism

What you need to know about staying hydrated!

We have all heard the importance of hydration. We have all been told how important it is to stay hydrated in order to perform optimally. Advice surrounding hydration always seems extremely generic. Why is hydration so important and how should we actually hydrate? Very seldom is this discussed with athletes.

Hydration is important as water is involved in almost every bodily function. When the body functions optimally it can perform optimally. If it is not functioning well then any stress applied to it is magnified. That is the short explanation as to why we should hydrate. Most will understand basic biology and the concept of osmosis. Solutes and water diffuse across a membrane from areas of high concentration to areas of low concentration. In regard to the body we have many forms of these membranes, the simplest being the membrane which surrounds all cells. Water is needed for many cell activities including cell metabolism, without which a cell would cease to function. The science behind cell metabolism is fascinating in itself but not all that practical for the majority of athletes.

For endurance athletes cardiac output is a critical factor. This is a product of heart rate and stroke volume (Blood volume ejected from the heart with each beat). Blood is mostly made up of water. In cases of dehydration blood plasma volume is reduced as water is excreted through sweating etc. Water and its role during sweating is the most effective element in heat management. If our plasma volume reduces there is reduction in overall blood volume as red cells become more concentrated in less plasma. This results in the heart having to work harder to pump enough blood around the body. This increase in workload is pointless additional stress for the body. It is purely a mechanistic result of water loss from the blood. It will cause a reduction in cardiovascular capacity and overall work capacity. Similar effects occur at altitude in an effort to combat reduction in oxygen pressure in the ambient air. The body increases hormones which excrete water to concentrate the blood, as less oxygen is being absorbed into the blood with the reduction in pressure.

The stomach is a key organ in the process of hydrating. Water is one of the few substances that can be absorbed by the lining of the stomach. In saying that water is also essential downstream in the small intestine for the absorption of other compounds ie. salts, sugars and amino acids. If we take in a lot of these compounds water must accompany them as a buffer in order for them to be absorbed. This is important when we look at things like sports drinks. These drinks often have high concentration of sugars and in some cases salt. This can be problematic for the rate of absorption of water. Athletes often complain of a feeling of fluid in the stomach after drinking large quantities of these drinks. That is exactly the case. Water must follow these compounds into the small intestine.

What this means is that water on its own is often absorbed faster than a sports drink. For short term exercise plain water is a better choice for rapid hydration. During longer bouts of exercise and in hot conditions many minerals and salts are lost from the body. The loss of minerals, salts and the consumption of glucose will have a significant impact on muscular and cognitive performance. In addition there is a change in osmotic gradients. This change may hinder the absorption of water. Drinking large amounts of plain water over long durations may cause potential hyponatremia (low sodium levels).

In many cases the advice given for monitoring hydration status involves examining the colour of our urine. Dark urine signifies dehydration. Lighter colored urine signifies good hydration. The concern here is that if one drinks lots of water without replacing salts and minerals, water will have problems being absorbed if salt levels are low. It can lead one into a false sense of being properly hydrated.

 

Hydration is critical to performance and must be a part of your routine.

An athlete must consider the circumstances. Short bouts of exercise, an hour long for example will not deplete salts and therefore plain water is a good choice. For bouts much longer and/or in heat, a marathon or long day hiking for example, a hydration formula is essential. By replacing salts and other compounds we can maintain a better level of hydration as well as providing essential compounds to cell function. In addition many compounds such as salt absorb better with sugars. A hydration formula should not just contain salt for this reason. Amino acids also help with salt absorption. If one uses a formula containing these other compounds they have the added benefit of replacing glucose for energy metabolism as well as reducing cell damage and aiding in recovery.

There are many commercially available sports drinks and formulas. Some are better than others. In many cases some popular brands are driven as much by taste as they are function. Many are too highly concentrated with sugar. In these cases they would be better if watered down. The level of solute concentration should reflect the conditions but in most cases weaker concentrations are less problematic. Less obvious, effective choices for hydration are targeted for a more clinical setting. Dioralyte and Pedialyte are specifically formulated for hydration without all the extras that you may find in some commercial sports drinks. One can also make a pretty decent homemade formula using natural ingredients. Water, salt and honey can form an excellent and simple hydration formula. Adding a little glutamine to the mix will also tick the box for amino acid presence.

 

Many great options but often designed for taste preference rather than hydration needs

A favorite of ours is the following. It has been tried and tested with excellent results.

1 litre of water

6 teaspoons of honey or maple syrup

½ teaspoon of table salt

 

In terms of timing it is important to constantly manage hydration. This means consuming fluids before, during and after exercise in accordance to the environment and type of exercise. Something to note is the effect of dehydration on digestion. Often athletes prioritize eating over rehydrating. In the case of multi day events this is not the best strategy. Poor hydration can lead to poor digestion and slow the process of refueling quite dramatically. Gastrointestinal stress can lead to poor sleep and other issues which have disastrous effect on performance. In the case of cutting weight for sport, water cutting is a popular method. An individual will purposely dehydration themselves in order to reduce overall bodyweight. After weighing in, if one does not rehydrate first it can be very difficult to consume food and digest properly before competition. Often a hydration formula and efficient hydration strategy will have greater benefits than eating after a weigh in. With that in mind hydration should always be priority number one. With added glucose it may also be a fast way to restore glycogen so it is beneficial in multiple ways.

Athletes need to be practical and efficient with every aspect of their performance that they can control. Hydration is extremely important but rarely discussed in practical terms. When one considers the circumstances and has some understanding of the process one can manage the situation much more effectively. That very much applies to hydration. A little bit of thought and practice with hydration strategies can make performance more consistent and training more effective.

 

If you liked this article please like and share. You can sign up to our free newsletter below!

 

Joining the Hamilton Sport team, Nutritionist Christina Higgins!

Hi my name is Christina Higgins and I am a recently qualified Nutritionist after studying Human Nutrition in University College Dublin. I first studied BESS in Trinity College Dublin but realized after graduating that I had to pursue my lifelong interest in food, which has brought me to where I am today.

I am now working as a consumer nutritionist in the fresh produce industry where I have the opportunity to reach out to both school children and students and demonstrate to them the necessity of a healthy diet and really how simple and budget-friendly it can be. I am a complete advocate of healthy eating with no fuss attached. I don’t believe in diets of any form unless a certain disease or medical condition warrants it. Instead, I believe in good, clean and healthy dishes that are easy to whip up and hassle free. In recent months, I have also set up an Instagram account called ‘Miss Nutricious’ which has allowed me to showcase how easy and delicious eating healthily can be, be it cooking in the comfort of your own kitchen or dining out with friends. That being said, I also believe that balance is really everything and that it is in fact healthy and normal to break out and enjoy a chocolate bar or dessert every once in a while.

In terms of my background in sports, I was never the ‘sporty’ kid or student. Having poor eyesight and refusing to wear glasses obviously didn’t help matters. Instead, I dabbled in tennis, hockey, sailing, cycling and even dance. Even though, I never excelled in any of them, I always enjoyed that feeling of being outdoors and that adrenalin rush after sailing a race or playing a tennis match. It is only in recent months that I have started training at my own pace. I’ve never been a huge fan of the gym so I’ve taken my exercise to the outdoors where I’m slowly beginning to see a transformation in both my endurance and overall physique. I now understand how important it is to exercise and the ‘feel good’ factor you benefit from afterwards. Needless to say, if I can manage to get to some sort of adequate fitness level, really anyone can.

Overall, I hope that my background in nutrition and passion for good food will encourage others to adopt a healthier lifestyle. As that cringe saying goes ‘life is not a sprint, it’s a marathon’. In summary, take everything slowly, any changes you make to your diet or exercise is not going to happen overnight but if you make an honest attempt at doing something, I promise you’ll reap the rewards.

All the best,

Christina

How Muscle can help you burn fat!

This article is geared a little more towards female training but equally applies to men. Traditional weight training is linked with the development of bulky muscles, useful in contact sports where body mass and increased strength can be very beneficial. A muscular physique is usually associated with as being masculine and heavy. As a result many females avoid weight training like the plague. They favour cardio training as a means to stay fit and keep body fat down. In many cases female athletes have had great success reducing bodyfat as caloric expenditure did lead to fat loss.

Most people want to achieve a “toned” physique. They often believe weight loss to be the main mechanism in which to achieve this desired look. Instead they simply achieve a skinny flat appearance lacking in shape. This can be identified in the controversial zero size model physique. Recently people have realized that shape comes from muscle underlying the fat. Simply losing fat does not create the physique one may desire.

This physique is not quite what most people look for. It is the product of fat loss with little lean muscle!

This physique is not quite what most people look for. It is the product of fat loss with little lean muscle!

The good news is that building muscle helps to burn fat. Lean body mass is made up of muscles, bones and ligaments. Muscle is considered a metabolically active tissue. This means that it is a consumer of energy. The more muscle you have the more total energy expenditure you will create. In addition weight training, depending on intensity, can burn just as many calories in a given time period as cardio training. The bonus is that when recovering from weight training we consume extra calories as muscle cells repair and recover. Growth and repair of cells has an energetic cost. Thus our overall metabolism increases helping to keep bodyfat levels down

For those worried about the bulky physique, they must consider the amount of training required to build muscle. It is a relatively slow process to gain muscle. Most experts will agree that 1 lb increase per week of lean muscle mass is about as good as one can expect without chemical assistance. This increase is also not usually consistent; over a year one may not expect to gain 52 lbs. There is also an increased water content in the body which may account for extra “scale weight” which is not necessarily muscle. The point is that athletes spend years actively trying to gain muscle and in some cases bulk up. It requires a lot of hard work in the gym and in the kitchen. Genetics also play a major part in how easy it is to gain muscle. One will not simply become bulky because one lifts weights. It will require a very focused effort over a long period of time.

The main lesson here is that building muscle is a key component in achieving a lean aesthetic physique. Many may find their weight loss can stall when using only cardio methods to lose fat. This is because your body can adjust its metabolism to meet energy intake. Focusing on building lean muscle tissue and supplying the nutrients required to do so can influence a shift towards body fat utilization. While diet is a key component, anyone looking to lose weight or “Tone up” needs to put time into developing lean muscle. It has great benefits to overall lifestyle as well as appearance. It will help make daily tasks much easier as you will become stronger and more efficient. Body composition is often much more important than body weight when it comes to physique.

Many female and male athletes are subject to body mass restrictions and targets. Often they avoid weight training as it has been traditionally stereotyped as a weight gain strategy. This is not in fact the case. It can be the tool that allows an athlete to achieve their desired weight while actually having a positive influence on their performance. One should establish whether or not they need to lose weight or in fact change their body composition. In the case of physique, muscle provides the shape and fat loss allows the shape to be displayed. Never neglect the benefits of weight training and lean muscle mass.

Complexes for fat burning!

There are many solutions for burning fat. The general theory is the energy balance, in the form of calories in, calories out. An energy or calorie deficit will undoubtedly lead to weight loss. The question is, will it create fat loss? Weight loss and energy balance are tricky as we assume that weight loss is in the form of fat. This is not always the case; energy usage is fairly unselective meaning it will burn both fat and reduce muscle. In fact, some suggest that during chronic energy deficit, muscle may be lost as part of a survival mechanism. The body adopts a philosophy where it looks to reduce energy consumption via muscle and retain energy stores ie. fat. This leads to a reduction in overall bodyweight but a retention of body fat.

In order to lose fat we must create a mild calorie deficit so as to avoid this survival mechanism and promote or at least retain lean muscle. One great method is through the use of complexes. Complexes string together a number of resistance exercises as a form of superset. The involvement of multiple muscle groups with little rest creates a large metabolic demand. The resistance aspect also promotes muscle adaptations and potential hypertrophy. By switching through movements one can use a relatively heavy weight as local muscle fatigue is reduced. Overall it ticks the boxes of what we try to achieve when looking to specifically target fat.

A complex can be relatively short and completed within a 10minute timeframe. It can be used effectively as a finisher style exercise at the end of a regular training session. It can also be combined with some traditional cardio to create a conditioning session.

Here are some examples of complexes.

Pure Complex

  • Barbell Deadlift
  • Barbell bent over row
  • Hang clean
  • Push press
  • Back squat

Rotate through the exercises for one rep and repeat 6 times for a full set

Conditioning Complex

Beastly circuits are a popular form created by ex Allblacks coach Ashley Jones

  • Barbell Deadlift
  • Barbell Row
  • Power Snatch
  • Overhead squat
  • Back squat

Complete 6 rounds then 3minutes on treadmill for one total set, repeat for 6 sets with no rest.

Excellent example of a barbell complex (Courtesy of www.defrancostraining.com)

Complexes are great for promoting lean muscle and muscular endurance. The fact that they burn a lot of calories is a major bonus. They should be used to promote fat burning where strength levels are a priority. Traditional cardio is also a popular method but may not support strength levels as effectively. Complexes can be a useful tool for athletes who must improve body composition but also maintain strength levels. They can also be used as a conditioning tool as it supports muscular power endurance which is beneficial to many sports.

A coach can be quite creative in structuring complexes but it must be noted that technique can be compromised under fatigue. Simple multi joint exercises are most effective; Olympic lifts and gymnastics should only be attempted with technically advanced athletes. They are an effective tool which can cover a lot of needs in a fairly time efficient manner.

HIIT, fat loss and muscle!

High intensity interval training (HIIT) is a very popular training method. When used correctly it effectively improves cardiovascular conditioning, burns fat and promotes new muscle growth. In addition a relatively short HIIT session is sufficient to elicit substantial performance gains. Like any training method, understanding the basic physiological principles will make a big help to using it effectively. This article will explain a bit about this type of training and some of the pitfalls to watch out for.

HIIT is popular because it is time effective. An individual can burn a lot of calories in a short space of time. As the name implies it is an intense form of exercise. Our energy systems function on a simple mechanism of energy charge. The rate of energy (Adenosine Triphosphate/ATP) utilization in the muscle cell must be matched by an energy supply system. Slow rate of energy expenditure during low intensity work is supported by oxidation. Oxidation supplies a lot of energy but at a slow rate. High intensity work is supplied by the glycolysis and phosphate systems which have a much faster supply. Supply must meet the demand. There is often a slight lag between utilization and supply. This means that even during rest intervals and post exercise energy consumption is still elevated. In simple terms our metabolism is increased and we continue to burn more calories than at normal rest conditions. For this reason even though a 20min session burns, for example 500kcals, energy expenditure is raised throughout the day. A low intensity session lasting one hour may burn 800kcal with minimal elevation in metabolisms for the rest of the day. For this reason HIIT may actually burn more calories on a daily basis. This is why it is so effective at fat burning.

HIIT can also be performed with a strength endurance element, supporting a leaner physique!

HIIT can also be performed with a strength endurance element, supporting a leaner physique!

In addition, the power output which is produced during the work period of HIIT is high. Higher power output during work periods are often effective in improving your conditioning. It also helps maintain strength and power simply by utilizing larger motor units. The main issue to consider with HIIT relates to energy supply. If we cannot supply the cells with adequate energy then they become damaged. This is known as metabolic stress. A certain degree of metabolic stress or damage can be reversed. This is what promotes new muscle growth. Moderate metabolic stress during training can, at times, be quite effective for promoting hypertrophy.

If we place too much stress on the muscle cells the damage can be irreparable. The cells will begin to die. When this happens on a regular basis muscle wastage can occur. It also places the body under larger amounts of general stress which will begin to impact on our immune system. There is a large list of potential health implications that this can eventually lead to.

Preventing this scenario is relatively easy but not always something we think about. One of the determinants to energy supply is our energy store. In the case of HIIT we need adequate stores of glycogen for an adequate supply of energy. If we do HIIT in a fasted state we are putting ourselves under severe metabolic stress, as there is little energy supply to fuel it. In addition the lack of energy will dramatically reduce performance so conditioning benefits may also be lost.

The take home message is this. Fuel up for intense exercise! Low intensity exercise can be done in a fasted state as the oxidative system works effectively to provide fuel. With intense exercise such as HIIT style training, you must have some glycogen stores or glucose in the bloodstream. If you are in a totally fasted, glycogen depleted state then consume some simple sugars close to training. By doing so you can maintain high intensity and reduce cell stress. You will still achieve an elevated metabolism that promotes fat burning. You also place the cells under just enough stress to help promote hypertrophy

It is important to understand training methods as the smallest oversight can cause more harm than good. HIIT is an effective tool but if it is not adequately fuelled it loses a lot of its benefits. It is a popular successful way to train and should be used in any program. Like any training method the process is the important part. It needs to be considered and managed properly in order to see the full benefit.

Fat loss for athletes!

Body composition and body mass are important for most sports. The success of an athlete can rely heavily on falling within the norms of their sports, especially where a weight category is involved. Nutrition and training are both vital in the role body composition and weight management. I will not discuss dietary strategy as it is not my are of expertise. Instead I will discuss the training considerations and strategy.

Step one is for an athlete to identify whether he needs to reduce bodymass (weight) or reduce body fat. Bodymass deals directly with bodyweight on the weighing scale with no concern for body composition. Body fat deals with body composition with possibly no influence on overall bodymass. When reducing body mass the main focus, is to create a consistent calorie deficit. How one trains doesn’t really matter as bodymass will decrease over time if calorie expenditure exceeds consumption. The issue is that this reduction will not be selective in terms of tissue loss. Both muscle and fat tissue will be lost but this is not such a good thing. In many cases an athlete will need to retain as much lean mass as possible and may even need to increase or at least maintain it. This creates a more complicated scenario where fat tissue must be the focus for reduction while avoiding any muscle tissue loss. The training strategy becomes a little more complex.

We know that in terms of metabolism, exercise at lower intensities utilise fat as fuel more effectively than high intensity exercise. The main drawback is that in terms of time efficiency it takes a relatively long period to burn sufficient calories. The other issue is that low intensity work can promote adaptations that are not so favourable for an athlete. Long periods of low intensity (LSD) training can promote a conversion of type 2 muscle fibers into fibres which more resemble the characteristics of type 1 muscle fibers. The athlete runs the risk of losing strength, speed and power. So this method must be used sparingly.

High intensity training has been touted as the magic pill for fat loss and performance in recent literature. Calorie expenditure is higher for a given work period and metabolism is elevated in the post training period. Sessions must, however be shorter as they will be more demanding. It is in this post training period where an elevated metabolism and active oxidative system plays its role in metabolising fatty acids. HIT may also promote strength, power and conditioning through a number of adaptive responses. At first glance this seems to be the obvious choice. As with most training methods it carries its disadvantages. By focusing on HIT we become reliant on the Glycolytic system during exercise. This system utilises carbohydrate metabolism and is always active even at rest when the oxidative system is dominant. Over time an athlete may promote the use of carbohydrates during metabolism which will in fact spare fat cells. If they do not consume enough carbohydrates there can also be a reduction in lean tissue as muscle cells do not get enough energy to survive.

The best strategy is to utilise both methods in an appropriate fashion. LSD can be made more effective in reducing fat and improving fat oxidisation by adding fasted LSD sessions into a program. Done before breakfast or immediately following a training session, enzymes active in fat oxidation must up-regulate to compensate for glycogen depletion. This means that less time is needed to initiate fat oxidation. HIT should then be performed in a fuelled state in a separate session to make use of its benefits. When both types of sessions are used in a balanced way that does not impede the athletes recovery, they can see all the benefits while negating the disadvantages.

As with most strategies a balance is required for optimum results. The body is exceptional at adapting to stress. Overemphasising one method over another will only display short lived success and may create problems in the long run. In the case of managing body weight and body mass a strategy must be formulated to suit the needs of the individual. A gradual and monitored approach is best for achieving long term and consistent results.

Carbs and competition.

First off, I am not a dietician, nutritionist or even self proclaimed food guru. There are plenty of folk out there willing to preach about what you should and should not eat but that’s not my area. I am purely going to focus on the role of carbohydrate in sporting performance. Quite recently there has been large debate over carbohydrate in our diets. The “Health and Fitness revolution” has given rise to an enormous amount of conflicting information. People very easily fall for the latest fitness trends in search of the magic pill! The role of carbohydrate in human performance is pretty simple, it is fuel! Lately we have seen a large amount of athletes at the performance lab attempting to eat paleo. While I don’t have an issue with the paleo concept we have noticed that their diet, while rich in fruit and vegetables, is still generally quite low in carbohydrate as a nutrient. Paleo foods tend not to be very carb dense in comparison to other sources which they have now eliminated from their diet. As a result their performance tends to suffer somewhat. Dr. Loren Cordain one of the founders of the paleo diet concept also states this concern quite clearly in his work. We go to great lengths, explaining to athletes why carbohydrates are so important in their diet. That will be the focus of this post.

The Science

As most of you are aware the body uses three main energy systems. Glycolysis is the system which deals with carbohydrate as it uses glucose to generate ATP. At low intensity exercise the oxidative (Aerobic) system is most active. At increasing intensity larger motor units become active. These motor units tend to be glycolytic in nature (Anaerobic). These consume glucose which is sourced either from the bloodstream or stores known as glycogen. Once glucose and glycogen stores are depleted higher intensity cannot be maintained. This translates to a reduction in power output and speed. It is therefore important that an athlete has an adequate amount of glycogen stored prior to competition to maintain performance. Athletes will try to develop their oxidative system in an attempt to preserve glycolytic fuel stores. Fat stores contain more energy. The longer they can run on fat for energy the less glycogen they will use. The mistake people make is in thinking there is a distinct switch between fuels and energy systems. This is not the case. At all times all three systems are active but one will be more dominant. For this reason all systems must be considered in terms of diet and training. The nature of their sport will influence the nature of an athletes metabolism.

Game sports

rugby world cup 2011 NEW ZEALAND ARGENTINA

Image: rugby world cup 2011 NEW ZEALAND ARGENTINA by Jeanfrancois Beausejour

The level of intensity varies greatly in team sports. Depending on position there can be an extremely varied utilisation of one energy system or another. Glycolysis is however generally very active throughout game scenarios in team sports. Numerous studies have examined carbohydrate supplementation during a games. The supplementation groups showed a better maintenance of speeds and a greater distance covered in the later stages of a game than the non supplementation groups. In addition to this other studies have shown in soccer that better performing teams cover larger distances per game than poorer performing teams of the same league. It is pretty clear that carbohydrate is quite an important factor in performance.

Endurance sports

Photo Chris McCormack https://creativecommons.org/licenses/by-nd/2.0/

Photo Chris McCormack
https://creativecommons.org/licenses/by-nd/2.0/

Endurance sports are a little more interesting as the success of an endurance athlete is heavily related to fuel management and efficiency. A successful endurance athlete will dedicate a large amount of training time aimed at increasing oxidative capacity. This allows them to stay aerobic for longer essentially preserving glycogen. They aim to be as effective as possible at utilising fat metabolism. This will allow them to save glycogen for periods where they need to call on larger motor units. In short they try to use glycolysis only when they need to maintain a higher pace. The length of their event will determine the pace they wish to maintain and therefore the reliance on glycolysis and carbohydrate as a fuel source.

I will not mention individual foods or diets as I think that is mostly down to individual preference. The point I want to stress is that carbohydrate plays a very important role in performance for nearly all sports. It is important for an athlete to understand that role and not neglect it. They must choose a nutritional strategy that best suits the requirements of their given sport. At the end of the day their performance will reflect wether their diet is good for them or not!