Tag Archives: Strength

Will cardiovascular training kill strength

One of the most poorly understood interactions in the sport and fitness world is that of cardiovascular training and strength levels. One of the most prevalent misconceptions is that cardiovascular training or “Cardio” will hinder or even reduce strength levels. In particular low intensity, high volume cardio has been touted as a strength killer.  Many will agree with this statement and anecdotally it seems to hold a lot of truth. Then we look at field athletes such as rugby players for example. Some have pretty impressive strength levels as well as excellent cardiovascular conditioning. How do they achieve this if the training methods counteract each other? In addition why do so many scientific studies with tight control and experimental design show conditioning to be improved alongside strength and power? There are similar misconceptions of strength in the endurance world. Endurance athletes believe strength training makes them slow and bulky.  How can so much confusion and mixed opinions exist in this.

 

The answer all comes down to one simple factor -Load! When we use the term load we are not referring to load as a weight, we refer to it as external stress. In this case the stress is training volume or overall training load. Typically cardiovascular training, especially the low intensity variety, is done in high volume to have effect.  Large volumes of training have high energy demands. These demands can be hard to meet nutritionally. In addition to this, large volumes of training can accumulate considerable microtrauma and damage to muscle cells. In practical terms there is an accumulation of fatigue.

 

If one wishes to increase or maintain strength levels one must train to the upper limits of one’s current ability. The neuromuscular system improves when its current capacity is placed under higher demands than it is capable of meeting. Over time and consistent stimulus it responds and adapts becoming more efficient. This is the basis of a strength program. Progressive overload is the simplest mechanism for adaptation.

 

An athlete must lift enough to elicit adaptation and increase strength.

An athlete must lift enough to elicit adaptation and increase strength.

When we train while fatigued it has obvious implications for what can be achieved. One will simply not be able to reach a level of intensity that would be considered maximal or required for any real stimulus. In short we cannot train hard enough to push our limits. With the result that the mechanism of progressive overload is never achieved as we remain well within our limits. Not being able to train maximally or at our upper limits will make it extremely difficult to see any improvements in absolute strength. In addition, prolonged periods of training in which we fail to reach intensity will result in detraining. If we don’t use it we lose it. We can lose strength as we don’t really get to the point where it is stressed.

 

Large volumes of cardio training take up a lot of time in our schedules. Larger volumes have been shown to be very effective in terms of improving cardiovascular conditioning. The issue is allowing enough time in a week to complete cardio, recover and then train strength. If it is not scheduled carefully there is bound to be latent fatigue when going into the subsequent training sessions. This is where issues arise and cardio begins to have a negative impact on overall training effectiveness.

 

Another argument is that physiologically the adaptations of cardio training counteract those of strength training. This is usually the argument used to explain why cardio kills strength. In reality the structural adaptations are largely defined by genetics. Smaller people tend to suit endurance sports just like larger individuals are suited to power type sports. Yes there is some influence of training but generally speaking we naturally sort into the sports we are suited to at a young age. Our size will influence our success in a given sport and there’s not much an individual can do about it. Larger people can be very well trained cardiovascularly but must move more mass and therefore tend to be slower as a result. Likewise smaller endurance athletes can be very strong pound for pound but will simply lack the mass to shift heavier weights. This is a major reason for weight categories in strength sports such as weightlifting.

Successful distance runners are physiologically suited for the sport. They have lighter rangier frames. Perfect for covering distance efficiently.

Successful distance runners are physiologically suited for the sport. They have lighter rangier frames. Perfect for covering distance efficiently.

 

In short genetically we are predisposed to certain characteristics which fool us into thinking the type of training we do is the reason for our abilities or weaknesses.  When looking at concurrent training the main factor that influences our improvements is fatigue. If training is carefully planned and one does not overtrain a capability or underecover from sessions, we can improve both simultaneously. Looking practically it is a lot easier to focus on one or the other but this is not always a possibility.

 

The point of the article is to highlight the fact that one can train strength and cardio simultaneously and see improvements in both. Strength can go unhindered and endurance can be improved with increases in strength. Poor understanding of the relationship between the two has led many individuals to neglect their conditioning in favor of strength or vice versa. When planning a training program one should consider the length of time it takes to recover from different training types. Progress will be ensured if one considers the differing timescales of recovery and appropriate training stimulus needed to promote adaptation. When this is accounted for concurrent improvements in both strength and cardiovascular conditioning are very achievable.

 

Sign up for updates!

 

Building a Big’Ole Bench

The bench press is one of the most common exercises in the gym. It was once the most popular lift that could be done. Recently it has become a victim to trends; what is old and mainstream tends to get cast aside and vilified. Now many coaches will be of the opinion that having big bench numbers will not make you a better athlete. I say that anything that increases overall strength in any movement is useful to any athlete. While not critical it is certainly something worth having. The bench press is still one of the best upper body compound movements there is.

Still an important exercise for overall strength and power

Still an important exercise for overall strength and power

While the bench press may seem relatively simple, it is often performed pretty poorly. Before you start working on building up your bench press have a look at any of Dave Tate’s bench press videos. His technique description is about as good as it gets. It is simple and gets you in the ballpark. https://www.youtube.com/watch?v=_QnwAoesJvQ

From my point of view there are two key parts.

 1) Build a solid base: Jam your feet into the floor and your shoulders into the bench. Make sure you keep your head down too. If you are rock solid on the bench then when the weight becomes a struggle every bit of energy will move the bar rather than squirming you’re body around. Feet flailing in the air will never help you get force through the bar. Being solid allows for all your effort to be transferred to the bar. It is also a lot safer than being unstable.

A good stable base and keeping the elbows tight to the body makes this lift much more effective.

A good stable base and keeping the elbows tight to the body makes this lift much more effective.

 2) Keep the elbows tucked. This means elbows closer to the body which will result in the bar a bit lower on the chest at the bottom position. While this helps keep forces moving through the shoulder in a much safer way, it also helps with the first point. Wide elbows when on the bench tend to result in the chest compressing towards the bench. The shoulders then protract slightly as the athlete begins to struggle. They then begin to wiggle and one arm inevitably shoots up in an awkward path and the bar goes in every direction but up. Not the most scientific explanation but very common when novice lifters begin to fail. Failing to keep the elbows tucked can be a result of scapular instability as well. Maintaining some scapular and upper back strength exercises are a great supplement to pressing movements.

In terms of reps and sets, it depends on the goal. Generally speaking some initial volume work is great to build up musculature and help ingrain the movement pattern. For increasing strength, back off sets work wonders for bench press. After you follow a basic starting strength program this can really take things to the next level. 5/3/1 by Jim Wendler would be my suggestion for anyone starting strength. It is simple, effective and works even with the most experienced lifters. https://www.t-nation.com/workouts/531-how-to-build-pure-strengthTo work back off sets effectively, I suggest working up gradually to max set of 2 repetitions. These should be comfortable reps with no slow grinding lockouts. It will be approximately 90% of max or slightly below. Then simply complete a couple of sets of slightly higher reps at a lighter weight.

A session might look like this: (Example 1RM of 100kg)

Work up to a heavy double

Bar X5

60kg X5 reps

75kg X3 reps

80kg X3 reps

85kg X2 reps

88kg X2 reps

89kg X2 reps

Then calculate your working percentage (This example taking 75%)

Complete two sets of 6 at 75%

There is quite a large amount of activation of motor units when working up to a heavy double. When you back off the weight feels light. You can really explode off the chest with each rep. This does wonders for training the neural aspect of strength without overloading the joints too much. Reps are quicker and smoother which is exactly how you want to train. I have used this method several times with many different athletes and without a doubt it is the most effective method for rapidly increasing bench press numbers.

There are many tools to do many jobs. The bench press is a great tool in building upper body strength and power. Use it safely and effectively to increase the potential of you or your athletes performance.

 If you liked this article then please like and share. Don’t subscribe to our free newsletter

The importance of weight training in-season!

In the professional era of sport the competitive season has become longer and athletes get very little rest. The modern athlete is not comparable physically to athletes ten years ago. Modern sport science and recovery techniques continue to drive the physical capabilities of athletes forward. The modern athlete is heavier, leaner, stronger, fitter and faster than ever. Most of this comes from the continuous development of training techniques but also because of the expectations on the athlete. A professional athlete works full time. When they are not on the pitch doing skill work they are in the gym. When they are not in the gym they are in the kitchen or in the treatment rooms of physiotherapists recovering for the next session. This is the way sport is in the modern era. Those who don’t keep up will be left behind.

Youth athletes nowadays train almost as hard as the professionals. The training age and physical maturity of most youth athletes is way ahead of where it was in the past. Schools players are more driven and better coached and their physical development is much more advanced. The level of competition in schools has developed these young athletes from quite an early age. With the result that younger athletes are coping with higher training volumes and demands than ever before. See  https://hamiltonsport.com/2015/04/13/training-age/

When we look at a competitive season in most sports there is quite a short off-season. Traditionally most athletes would look to further their physical development in the off-season. In the past this may have been as long as four months. Now many athletes have no off-season or maybe only a number of weeks. This means that for many to continue to develop they must do so in-season. Recovery is the main concern with this. Tired athletes become slow physically and mentally and performance suffers. Modern technology and sport science has allowed us to monitor athletes much more closely so we can be more accurate with training. Athletes can now train just enough to elicit adaptations without hindering performance.

Good coaches monitor their athletes efficiently and in a manner which allows them to adjust training very easily. By analyzing the athlete’s performance on a number of indicator tests they can see how fatigued the athlete is. There are many techniques, from RPE rating and verbal feedback to countermovement jumps and barspeed analysis. Most coaches understand how important it is to be flexible with training and know when and what to change. Often an athlete will come into the gym expecting to lift weights but instead be given a simple mobility routine. It all depends on the monitoring and fatigue management protocols adopted by the training staff. Professional sport utilises monitoring to ensure athletes are always in the phase of training that is planned in accordance with the season goals and performance priorities.

Many believe weight training to be something which cannot be completed during the season as it fatigues athletes and slows them down. This is not always the case. When used appropriately weight training can actually be used to excite the nervous system leading to an improvement of contractile function. This means it can actually make an athlete faster for a short period of time after the session. This is known as a PAP response which you can read more about here. www.hamiltonsport.com/2015/01/31/post-activation-potentiation/

Because of the length of some seasons and competitions in relation to the off-season or rest periods, it may be necessary for an athlete to train to maintain abilities. Athletes typically begin to lose some motor capabilities after about 10 days. If they do not continue to train, the ability slowly fades away. However, it takes approximately 40% of original training load to maintain their conditioning. Continuing to train albeit at a reduced level will allow them to stay at their potential throughout a season which may last up to 10 months in some cases without a break. Waiting this long to get back in the gym would literally put a player back a full season in terms of their physical development. For younger players this would have massive implications on their career.

In addition to physical development, in-season training plays a major role in injury prevention and game preparation. Often during long seasons athletes build up imbalances which, if not corrected, can develop into chronic and acute injuries. Maintaining some strength work focused at developing a balance of strength and movement can be a very effective preventative measure.

Maintaining and S&C program is essential for most modern teams especially when some players may be called up for international duties. Leinster Rugby Imagery. Picture credit: Dáire Brennan /

Maintaining an S&C program is essential for most modern teams especially when some players may be called up for international duties. Leinster Rugby Imagery. Picture credit: Dáire Brennan

In modern sport a squad extends wider than a starting team. Subs and reserves play a much more active role as game intensity increases. At a moments notice a player may be expected to start when they may not have had game time in several weeks. The only way to prepare them may be to simulate some of the physical demands of the game in a gym setting. It is essential for all squad members to be ready to play at match intensity despite not getting adequate match time. The strength and conditioning program is extremely important to these players.

In conclusion, modern sport is rapidly developing. The physical capabilities of most athletes are also developing. There are larger demands on the athletes in terms of the amount of training required to be competitive. Fortunately modern science has allowed us to support this development. We understand the body much better nowadays. We need to embrace change and learn what we are capable of achieving. This won’t happen if we sit, wait and just rest all the time. Athletes are more motivated than ever and understand that professional sport is a full time job. Progress is essential and they and their coaches will be doing everything possible to ensure it continues. In-season strength and conditioning is now an essential component in the success of a team or athlete.

It’s never wrong to be strong!

There are very few sports where absolute strength is unimportant. Regardless of whether or not the athlete’s bodyweight is important to performance, strength is always beneficial. A strong athlete will often be able to make up for skill more often than we like to admit. We have all seen clumsy, brutish athletes simply overpower and overwhelm more skilled opposition. In combat sports the argument is that two fighters of equal skill, bodyweight will be the defining factor. This is the reason for weight classes. Now, in a particular weight class we recognize that the stronger fighter will have the advantage.

Despite this we still argue that strength isn’t everything. While I believe other factors are just as important I will present a case for absolute strength being a critical factor. First we will look at the debate of relative strength. The Powerlifter/strongman vs. Olympic lifter is one such example. On one hand we have the Olympic lifter, a master technician who can shift weight more efficiently than most other athletes. They have incredible strength relative to bodyweight. Then we look at a powerlifter or strongman. They demonstrate tremendous strength while not being as technically efficient as an Olympic lifter. They also have much greater bodyweight which diminishes their strength to weight ratio. The following video shows how they compare when asked to squat their own bodyweight for max repetitions.

While the strongman and Olympic lifter achieve the same total reps the powerlifter has a greater total load lifted. Work done is an extremely important factor in all sports. This simply demonstrates that despite him not achieve the same reps his absolute strength allows him to beat more efficient lifters.

In the case of endurance athletes the argument may not be as obvious. Endurance athletes must sustain workloads in order to be successful. Our initial thought may be that their conditioning is going to be the critical factor. Again this is not the case. The greater an athlete’s maximal power output is, the easier he can manage submaximal work. Relative workloads become less intense. An athlete who must sustain 300watts when his max is 350watts will struggle against an athlete who maintains 300watts with a max of 400watts.

Crossfit athletes are also a very good example of this. They are often prescribed workloads which disregard any differences in the size or strength level of an athlete. In this case an athlete who must complete 20 deadlifts of 100kg, having a max effort of 150kg will need to work much harder than an athlete who has a max effort of 200kg. The first athlete is lifting 75% of their max in comparison to 50% with the second. This allows for a large advantage which may be too great to overcome even with a more efficient technique.

While I do not advocate neglecting technique or conditioning, it is important to realize the advantage that absolute strength provides. A weak yet technically good athlete will automatically be at a disadvantage. For this reason it is a very good idea to ascertain strength standards which athletes should look to achieve in their discipline. If they fail to do so it may highlight where they might struggle during competition. Very often direct attention to strength development can make a very significant impact on an athlete’s performance. Neither coach nor athlete should ever disregard the benefits of an effective strength program. It is often overlooked especially in technical sports. At high levels of competition this oversight may be the weakness that gives the opposition the opportunity they need to win.

Science of strength!

In this post I will discuss the physiological components that make up physical strength. In general the strength of a muscle is determined by its cross sectional mass. When we assess the improvement of strength in a muscular contraction, we see a significant increase in force output in a short space of time with no change in mass. This shows us that there is also a neural component that plays a significant role in strength. In order for a muscle fiber to hit a peak contraction it must be stimulated fully. A beginner to strength training will be unable to reach his true max because he will be neurally untrained. This means he is not capable of using all his muscle fibers or even capable of using the select few to their full potential.

When we want to move, we send a chemo-electrical signal from brain to the muscle which results in a contraction. The more signals we send the more forceful the contraction. In order to achieve maximum contraction we must have a constant and rapid train of impulses coming from our brain. The route the impulse takes down the nerves must be capable of sustaining and transmitting these signals. Early in our training it is these nerves which improve at delivering stimulus, that results in strength improvements.

There are several factors which can prevent us achieving maximum contractile forces. We have safety mechanisms which prevent us reaching our limits in order to prevent damage to our muscle tissue. These mechanisms are largely involuntary and are not simply a case of pushing harder. When we train the thresholds for these “safety switches” raise, allowing us to lift more. This is partly because our muscles become more conditioned and less susceptible to damage but also because our overriding mechanisms improve. We can prove this theory by using a simple maximum voluntary contraction test on a muscle. An athlete produces their strongest contraction and when it peaks we add extra stimulus externally with an electric impulse. The peak will increase significantly higher than voluntary stimulus could achieve, proving there is more force possible.

So how do we increase strength? There a couple of areas which can be improved. First we need to train the movement. Becoming more accustomed to the movement helps us learn the pattern of muscle activation required to perform the action effectively. Second we must improve stimulation and muscle activation. The obvious method is working closer to our maxes which in theory requires a “close to max muscle contraction”. Become accustomed to producing maximum force will improve the mechanisms involved over time. This can be taxing on both the central nervous system (CNS) and the muscle structure itself. It will require structural recovery which takes time. Speed training is an excellent variation as it allows us to improve the rate of impulses coming from the brain. More ballistic type exercises such as jumping are a good way to improve rate of neural transmission. Adding bands or chains to sub-maximal weights for particular lifts can also be another variation to include. The increased resistance over the range of the movement requires an accelerated contraction.

Adding chains can be very effective at improving neural components involved in strength. Photo source: www.clintdarden.com

Adding chains can be very effective at improving neural components involved in strength. Photo source: www.clintdarden.com

These types of training are excellent ways to improve the neural component of strength without needing any structural recovery. They are demanding on the CNS and as always adequate recovery is necessary. The next area to work on is increasing muscle mass. This involves hypertrophy of the muscle fibers which occurs over a much longer period of time.

Becoming strong is important to all athletes but understanding what makes them strong can be just as important. The body adapts quickly and so a multidirectional approach can help progress in terms of consistency. Often athletes employ the maximal lifting approach exclusively and plateau quickly. Combining different methods over a periodised training plan can make sure that an athlete continues to improve in the long term and achieve full potential.

Make it quick!

An issue I have encountered with younger athletes is the issue of bar speed during lifts. Typically younger athletes that I’ve worked with have come from school sports. In some cases these school teams have an organised lifting program attached. Most of these programs centre primarily around the weight lifted. This causes a slight problem as from the very onset of training these athletes create a mindset where weight on the bar is all that matters. As long as the weight increases when moving the bar from A to B, they are progressing.

I have a fair amount of “Dynamic” or “Power” work in the programs I set. I think it’s obvious that athletes benefit from speed work as well as strength work. The issue arises during these sessions. I’ll use the power clean as an example. Many of the athletes I work with believed that as long as they get the bar from floor to the front rack position it is a successful clean. Luckily they understand for the most part that this should be a smooth and fluid motion and rarely do I find them in compromising positions. However, bar speed was often compromised. As long as the bar is heavier they believe that they are improving. At times these lifts become a slow heave to move the weight, accompanied by a massive spread of the feet to get into the catch position. I believe this acquired technique is the product of simply trying to shift weight.

I spend a lot of time detraining this mentality. At times the purpose of certain exercises in our program is to build power and speed. They should therefore be done as fast as possible even if that means decreasing the load. I leave the strength work to the core lifts like Squats and deadlifts etc. When we do power work I want their mentality to be focused on speed and explosiveness and a precise and swift movement. When we incorporated banded bench press into the program I think the athletes realised that a lift which they typically considered a “How much do you lift” exercise, could be utilised very differently.

After a few months we now squat and bench press at near maximal loads weekly, as well as incorporate their more dynamic variations successfully. I was happy to be able to change their way of thinking when it comes to bar speed and purpose of the lift. It’s great to now hear feedback on how lifting more quickly and more explosively has helped some very strong players become quicker on the pitch.