Tag Archives: Distance Running

Bang for your buck: RUN!!

Whether you want to complete a marathon or finish a fun run for charity this article will help you get there. The following tips allow you to start with a good foundation for training. In order to enjoy the experience of your event, you should be well enough prepared so that it is not a hellish struggle. In order to be prepared you need to do some training. We recommend you allow yourself a minimum of four weeks consistent training to see a noticeable benefit. You don’t need to train like an Olympian but you do need to be consistent.

Step 1: Base miles

In order to complete your distance you need to be comfortable on your feet. Only by getting out running on a regular basis will you achieve this. Not only will your ligaments and muscles strengthen but you will improve fitness. Be realistic at the start and build the volume up over time. Start with the goal of 30 minutes jogging three times a week. Even if you have to break it up with some walking, being out on your feet for longer durations will help get you comfortable. This in itself can be significant when it comes to completing your race. Gradually increase the duration over time to keep increasing your fitness levels.

Step 2: Raise your thresholds.

In order to be truly comfortable on your feet and achieve your target time, you must improve your comfort at higher running pace. By raising the ceiling of your conditioning (Threshold), relative efforts become easier. For example on week one you can run at 10km/hr for one minute before you need rest. At week five, if you can run at 15km/hr for one minute, you will last significantly longer than one minute running at 10km/hr, as it will no longer be your threshold pace. The best way to achieve this is to run for short periods of time at your limit, rest and repeat multiple times for one or two sessions each week. 4x 4min runs with 4 minute gentle rest recovery will have a rapid impact on your threshold.

Step 3: Run the distance

Experience is key. If you run your race distance once or twice as practice in build up to your race, you can learn a massive amount. Pacing, incorrect shoes, incorrect clothes and what to eat or drink before a race can all be small factors which can ruin a race. By having a trial run you will know what to expect. It will give you confidence and knowledge. So often people start too fast or wear the wrong shoes only to end their race in an avoidable disaster. Having the peace of mind to know “I can do this” will make race day a lot less daunting and may even allow you to set a great time.

Step 4: Know what motivates you

Some people like to run with a partner, others need music. Whatever works for you needs to be a part of your routine. There will be times when you don’t quite feel motivated to go out and get a run finished. Having your running buddy or iPod could be the difference. Remember consistency pays off, staying motivated to do the training is a challenge sometimes. You must use what works for you to keep you on track and give yourself the best possible chance of success.

These 4 simple steps are all it takes to get started. If you stick to these basics, things will go smoothly. Even Pro athletes use these principles at the core of their training. In time you can build on these if you choose but it is essential to get the basics right from the beginning.

Training masks; the science behind them!

People like new toys and gadgets, especially ones which can improve their performance. In recent years breathing masks and gas masks have become popular amongst athletes and fitness enthusiasts. The idea originated from firefighters and the military who experience some extremely intense, physical situations while wearing breathing apparatus. The experience of wearing these masks in such scenarios can be quite overwhelming. In order to familiarize themselves with these situations they began to train while wearing their equipment. Obviously the more accustomed to something we are the more comfortable we are with it. Shortly, after we saw them to be used in the fitness community. They started to use similar equipment in search of more intense training methods.

In very recent years breathing masks have been produced commercially and specifically for the fitness and sports industry. Like any new training tool it comes with many benefits. This article is aimed at examining the physiological theory for the use of such masks. By understanding the physiological processes taking place we can make better use of such equipment.

76366

The major misconception which seems to have formed with the use of these masks is their ability to replicate high altitude. High altitude has been linked to many physiological benefits to cardiovascular conditioning. The concept of this relates to the partial pressure of atmospheric oxygen. Oxygen (O2) molecules move from lungs to blood and the blood to muscle through a process of diffusion. The molecules travel across thin membranes from areas of high, to low pressure. If ambient oxygen pressure is low, as it is at high altitude, less molecules cross from lungs to the blood and so forth. The amount of O2 in the air remains exactly the same (20.93%) but overall air pressure (Barometric Pressure) is greatly reduced. In order to compensate, our body first increases breathing rate and take bigger breaths. This allows us to utilize a larger portion of the lung and alveoli allowing more O2 to diffuse into the bloodstream. Another reason is to excrete Carbon dioxide (CO2). By blowing off CO2 we drop the pH level of the blood and create something known as “Respiratory alkalosis”. This allows more oxygen to be absorbed by our red blood cells. This process occurs similarly at sea level.

When exposed to this over long duration (16hrs+ per day for a minimum of two days)(Chapman et al, 1998) our body increases a hormone called Erythropoietin (EPO). This hormone when combined with iron stimulates the creation of new red blood cells, a larger amount of which allows us to transport more O2 around the blood. In addition our muscles respond to training by increasing mitochondria and capillarization of the fibres. This allows our muscles to consume more oxygen. The issue with altitude training is that our breathing rate can only increase so much and the other adaptations are relatively slow to occur. As a result the intensity of our training significantly drops. This is why many athletes choose to live at altitude and travel to sea level to train. It allows the adaptations to occur without training intensity suffering. This limitation is well documented.

Breathing masks do not alter the partial pressure of O2. They simply restrict airflow. They do not specifically filter O2 from the air. We compensate for this restriction by breathing more forcefully creating positive pressure to overcome the resistance. This is similar to techniques adopted by individuals suffering with breathing difficulties such as asthma and COPD. Pursed Lip Breathing is an excellent example of a breathing technique used to compensate for resistance. It is also something we automatically do when wearing a gum shield or mouthguard. We do not experience any increase in EPO as pressure gradients are maintained. The processes taking place at altitude are different from the ones taking place when using these masks .

In order to compensate for resistance we must breath with more force, both when we inhale and exhale. We use the diaphragm and intercostal muscles. These muscles are like any other; they become stronger when a stress stimulus is applied. When using these masks we are in theory strength training our breathing muscles. This can allow us to utilize a larger portion of our lungs, making our breaths more efficient and deeper. It also allows us to develop our breathing muscles, which will make breathing easier in normal conditions. This is of great benefit to an athlete’s conditioning as the effort in breathing will be greatly reduced.

Elevation-Trianing-Mask-PKR_3596

In addition to physical adaptations we can also experience some mental benefits. In scenarios where breathing is restricted we get a sense of breathlessness. This often causes panic. In a competitive environment panic can be a debilitating experience. Like firefighters and military servicemen, becoming accustomed to that feeling can have a great benefit. Learning to be comfortable and to relax allows our breathing to settle. Having the experience to know how to breath efficiently in such a scenario can allow an athlete to maintain composure. I believe this to be a very significant benefit to the use of such masks.

Like any new tool or training method it is very important to understand the processes taking place and the adaptations that come with them. Unfortunately there is relatively little research available on the use of breathing masks. I believe them to be an effective tool when used for the right goal. With any training an athlete wants the best results. Examining the physiological process taking place we can often learn to make best use of the tool. While science cannot always give the exact answer it usually puts us on the right track.

Weight training and endurance athletes!

Traditionally endurance athletes tend to avoid doing a lot of weight training. The reason being that they don’t want big blocky muscles which they will have to carry around during a race. This perception is starting to dissipate with modern endurance athletes, as they realize the benefits of weight training. I will discuss a number of these benefits and how they can improve endurance performance.

  1. Increased Strength

The first and most obvious benefit to weight training is improved strength. This strength comes from a number of physiological adaptations. Muscle fibres develop so they can produce a stronger and faster contraction. In addition the recruitment of muscle fibres is improved. Neural patterns become better trained allowing for more efficient contractions during movements. Ligaments also become strengthened which also increases the amount of force we are capable of applying.

This strength increase means that relative workloads become easier for an athlete. It requires less relative effort to maintain a certain pace or power output. They will find it easier to sustain a certain workload and will be capable of working more than they could previously. They also have the higher maximal power output which may be useful during sprint type scenarios.

  1. Injury prevention

Weight training strengthens ligaments and tendons. This means the ligaments and tendons can tolerate greater amounts of force. This will significantly reduce the risk of injury as they are much more resilient to damage, which may occur during intense exercise. High loads through the joints are common for all athletes during athletic movements. Making the ligaments stronger would be a good way to prevent any damage occurring.

When we spend large amount of time training a particular skill or movement the muscle involved becomes more developed. Often their opposing muscle group lacks this development leading to imbalances. This not only affects movement patterns but can also heighten the risk of injury. Weight training can be an ideal time to correct these imbalances.

  1. Core Strength

I refer to core strength on its own purely because I want to emphasize its importance. Having a strong trunk and core allows us to transmit force through our body much more efficiently. A tired runner or cyclist tends to wobble back and forth in their upper body. This is an indicator that their core has fatigued as they cannot maintain efficient posture. This is a waste of energy and a waste of effort. A strong core allows for more efficient and direct movement. This can help an athlete conserve energy without sacrificing pace. Weight training is a superb way to strengthen the core and help coordinate the body.

  1. Hormonal support

Weight training promotes certain hormones which can be beneficial to all athletes. It can help promote lean body mass and reduce fat mass. This means that you carry less “dead weight” in favor of muscle which can contribute to your performance. As an athlete you will become more energy efficient.

The most important thing for any athlete to remember is to favour movements over muscles when weight training. Their goal is performance orientated and their program should be different to that of a bodybuilder. If they train compound multi-joint movements with an emphasis on form and the goal of getting stronger, they will see a benefit.

Most endurance athletes fear weight training for fear of getting too big. In reality this is quite unlikely. Our capacity for hypertrophy is largely determined by genetics. We tend to identify our body type shortly after puberty. Heavy, more muscular individuals are unlikely to ever succeed in a sport that favors slender, lean bodies like endurance running or cycling. While we can influence our size, it is usually quite apparent we are naturally suited to some sports more than others. We enjoy sports that we can compete at. If we are the wrong shape or size we tend to avoid that sport because we don’t do so well at it. A high level endurance athlete is unlikely to gain the amount of muscle mass that would hinder his performance. They can still however, see significant strength improvement without muscle gain. They should not fear weight training as it is likely not to become a problem unless they are struggling with an unfavourable body type to begin with.

In summary, athletes of all types will benefit significantly from weight/strength training. They should always approach it from a movement perspective and not try to isolate muscles unless prescribed for prehab or rehab purposes. Endurance athletes are now realizing that an appropriate strength program should not be feared. It can and should be implemented to their program as they are likely to see quite noticeable improvements in the areas discussed.