Tag Archives: Aerobic performance

Exercise performance in the heat!

As it is coming closer to the summer months here in the Northern Hemisphere, now is a good time to discuss how heat influences performance. Paula Radcliffe is possibly the greatest example of heat stress and performance. Her race at the Athens 2004 Olympic games was a disaster. She blamed the extreme heat for her lack of performance at a period where she appeared to be in great racing form. Heat exhaustion also claimed several top athletes at the 2015 Crossfit Games. It is an often overlooked and significant concern for many athletes.

As we exercise, the by-product of metabolism is heat. This heat production raises our body temperature. Our body tries to maintain a range between approximately 36-37°C. It has several mechanisms to do this including sweating and directing blood flow to the surface of the skin. This helps dissipate heat through evaporation. If temperature rises above this range, safety mechanisms in the form of temperature sensors in the body will intervene. Your body will actively try to reduce its activity in an effort to slow you down to the point at which it can get temperature level back under control.

In terms of endurance, cardiac output is a major determinant of exercise performance. If we sweat, the water in our blood plasma is reduced. Cardiac output will reduce and endurance performance will be diminished. For this reason we try to maintain our hydration as best as possible. The hotter the ambient conditions the more we need to drink to replace lost fluid and maintain our performance capacity. If we drink large amounts of water and sweat a lot, we run the risk of excreting a lot of salts which are in sweat. If we do not maintain a salt/water balance we can start to experience cramping in the muscles. Often athletes drink until urine has a very light yellow colour. This is generally a pretty accepted method of monitoring your hydration. However, if we do not replace salts we can achieve light coloured urine relatively quickly but without properly reaching hydrated status. In the case of extreme heat and sweat adding a hydration tablet or isotonic fluid is beneficial. It not only replaces salts but can help rehydrate as fluid is absorbed more efficiently when it has isotonic concentrations of electrolytes.

An important factor to consider in the heat is the relative humidity. Humid conditions are much harder to cool down in as sweat and evaporation are not nearly as efficient. It is also good to consider the fact that in dry conditions sweat may not be as noticeable as evaporation is quite rapid. In both cases we can lose a lot more sweat than we think. As fluid loss is so detrimental to performance it is essential to maintain a strategy of drinking and staying hydrated and be aware of the conditions.

In terms of warming up, an increase in body temperature is extremely beneficial to muscular contractility. If our temperature is too high though it will have a very negative effect. In extreme heat remaining cool may be more important than increasing temperature before a race. It is even more important to manage heat during competition especially in longer events. Wearing light coloured, light material clothing can help reduce heat from the sun. Precooling using a cooling jacket, cold drinks or dampening your clothes can also help keep body temperatures down in hot conditionings. Overheating during a long race can have disastrous effects. In Paula Radcliffe’s case it was likely her extensive warm-up in the heat raised her temperature to a point where she could no longer manage optimal temperature when the race started-Something which would not have been an issue racing elsewhere.

 

Heat exhaustion can creep up on you and put an early end to your competition. It can also be extremely dangerous.

Heat exhaustion can creep up on you and put an early end to your competition. In can also be extremely dangerous.

It is rare that many athletes experience truly extreme heat as many event organizers take safety into consideration. However, sometimes we compete in foreign regions and some athletes are more accustomed to hot temperatures than others. The heat can have a very significant impact on performance. It is essential that athletes always consider the competition environment and have strategies that allow them to be at their best. It is always good to be prepared. Always bring a cap and light coloured shirt to competitions. Sunscreen and water are essential to a competition kitbag. Conditions can change fast and the simplest forms of preparation can make all the difference.

If you liked this article please like and share. Also don’t forget to subscribe to our free newsletter below.

Thank you!

 

Bang for your buck: RUN!!

Whether you want to complete a marathon or finish a fun run for charity this article will help you get there. The following tips allow you to start with a good foundation for training. In order to enjoy the experience of your event, you should be well enough prepared so that it is not a hellish struggle. In order to be prepared you need to do some training. We recommend you allow yourself a minimum of four weeks consistent training to see a noticeable benefit. You don’t need to train like an Olympian but you do need to be consistent.

Step 1: Base miles

In order to complete your distance you need to be comfortable on your feet. Only by getting out running on a regular basis will you achieve this. Not only will your ligaments and muscles strengthen but you will improve fitness. Be realistic at the start and build the volume up over time. Start with the goal of 30 minutes jogging three times a week. Even if you have to break it up with some walking, being out on your feet for longer durations will help get you comfortable. This in itself can be significant when it comes to completing your race. Gradually increase the duration over time to keep increasing your fitness levels.

Step 2: Raise your thresholds.

In order to be truly comfortable on your feet and achieve your target time, you must improve your comfort at higher running pace. By raising the ceiling of your conditioning (Threshold), relative efforts become easier. For example on week one you can run at 10km/hr for one minute before you need rest. At week five, if you can run at 15km/hr for one minute, you will last significantly longer than one minute running at 10km/hr, as it will no longer be your threshold pace. The best way to achieve this is to run for short periods of time at your limit, rest and repeat multiple times for one or two sessions each week. 4x 4min runs with 4 minute gentle rest recovery will have a rapid impact on your threshold.

Step 3: Run the distance

Experience is key. If you run your race distance once or twice as practice in build up to your race, you can learn a massive amount. Pacing, incorrect shoes, incorrect clothes and what to eat or drink before a race can all be small factors which can ruin a race. By having a trial run you will know what to expect. It will give you confidence and knowledge. So often people start too fast or wear the wrong shoes only to end their race in an avoidable disaster. Having the peace of mind to know “I can do this” will make race day a lot less daunting and may even allow you to set a great time.

Step 4: Know what motivates you

Some people like to run with a partner, others need music. Whatever works for you needs to be a part of your routine. There will be times when you don’t quite feel motivated to go out and get a run finished. Having your running buddy or iPod could be the difference. Remember consistency pays off, staying motivated to do the training is a challenge sometimes. You must use what works for you to keep you on track and give yourself the best possible chance of success.

These 4 simple steps are all it takes to get started. If you stick to these basics, things will go smoothly. Even Pro athletes use these principles at the core of their training. In time you can build on these if you choose but it is essential to get the basics right from the beginning.

Recovery Tools: Active Recovery!

Recovery has become a core factor in every athlete’s training and success. There are many recovery methods which can be employed all targeting different things. Not all methods work well for everyone and people will have their favourite. This is normal as the processes of each method are slightly different. Some things will simply have a better effect on certain individuals than others. One popular and convenient method is active recovery. In terms of effect it appears to be relatively beneficial to everyone.

When we exercise we produce metabolic by-products. These by-products can interfere with muscle contractions and contribute to fatigue. While we exercise we have a system to clear these by-products and consume them. When we stop, the rate of clearance reduces and they can be left to accumulate. Eventually they will be cleared up but at a reduced rate. Some gentle exercise post training can help ensure these metabolites are cleared effectively.

When we do more intense muscle contractions where a lot of force is applied, muscle stiffness can occur. Stiffness is when the fibres fail to fully relax causing a temporary shortening of muscle fibre length. Gentle movement can help break up this tension and reduce stiffness. Active recovery can be quite effective in doing this. The submaximal contractions allow the fibres to relax back to resting tension.

Another mechanism it can influence relates to bloodflow and temperature. In order to repair damaged muscle cells after intense exercise they need a good supply of nutrients. This supply comes from the blood. Increasing bloodflow to tired muscles ensures they get a good supply. In addition increasing local muscle temperature can help the muscle fibres loosen up and restore contractile function. Gentle exercise activates the muscle pump which flushes blood through the muscle as it contracts and relaxes.

These three mechanisms have some quite favorable benefits on getting back to top performance in a short period of time. An important factor and one which many people get wrong is when and how to do active recovery. Active recovery first and foremost should not contribute further to fatigue. Intense exercise is not recovery; it is simply another session. Often people perform hard conditioning instead of resistance training believing it promotes recovery. While some aspects may have a similar effect, the benefits are cancelled out by the increased metabolic and cell stress. A reliable intensity to work at is 50-60% of Heart rate reserve. The session need not be any longer than 30mins to be effective. We recommend low load bearing exercise to reduce any further stress on joints etc. Swimming, crosstrainer and biking are excellent choices.

Deciding when to employ active recovery is also tricky. In most cases we should employ some sort of short active recovery in our warm down procedure. This allows us to clear metabolites immediately after a session as well as stabilizing core temperature in a more gradual manner. Some like to use recovery sessions on their day off. In this case promoting bloodflow and reducing stiffness are the main mechanisms. This scenario is problematic as one must refrain from turning recovery into more conditioning work. While for some, running and rowing may be suitable, many heavier athletes will actually induce more fatigue and joint stress using these exercises. A 5k run is not a recovery session it is aerobic training, while less intense it simply applies a different type of stress.

It is important for athletes to understand the purpose of active recovery and the mechanism by which it works. Just because a session is of lower intensity it does not automatically become recovery work. The sole purpose of active recovery is to promote a restoration to a rested state and therefore maximum performance potential. It has a clear purpose and application. Smart athletes recognize the difference and they reap the rewards of using it effectively.

HIIT, fat loss and muscle!

High intensity interval training (HIIT) is a very popular training method. When used correctly it effectively improves cardiovascular conditioning, burns fat and promotes new muscle growth. In addition a relatively short HIIT session is sufficient to elicit substantial performance gains. Like any training method, understanding the basic physiological principles will make a big help to using it effectively. This article will explain a bit about this type of training and some of the pitfalls to watch out for.

HIIT is popular because it is time effective. An individual can burn a lot of calories in a short space of time. As the name implies it is an intense form of exercise. Our energy systems function on a simple mechanism of energy charge. The rate of energy (Adenosine Triphosphate/ATP) utilization in the muscle cell must be matched by an energy supply system. Slow rate of energy expenditure during low intensity work is supported by oxidation. Oxidation supplies a lot of energy but at a slow rate. High intensity work is supplied by the glycolysis and phosphate systems which have a much faster supply. Supply must meet the demand. There is often a slight lag between utilization and supply. This means that even during rest intervals and post exercise energy consumption is still elevated. In simple terms our metabolism is increased and we continue to burn more calories than at normal rest conditions. For this reason even though a 20min session burns, for example 500kcals, energy expenditure is raised throughout the day. A low intensity session lasting one hour may burn 800kcal with minimal elevation in metabolisms for the rest of the day. For this reason HIIT may actually burn more calories on a daily basis. This is why it is so effective at fat burning.

HIIT can also be performed with a strength endurance element, supporting a leaner physique!

HIIT can also be performed with a strength endurance element, supporting a leaner physique!

In addition, the power output which is produced during the work period of HIIT is high. Higher power output during work periods are often effective in improving your conditioning. It also helps maintain strength and power simply by utilizing larger motor units. The main issue to consider with HIIT relates to energy supply. If we cannot supply the cells with adequate energy then they become damaged. This is known as metabolic stress. A certain degree of metabolic stress or damage can be reversed. This is what promotes new muscle growth. Moderate metabolic stress during training can, at times, be quite effective for promoting hypertrophy.

If we place too much stress on the muscle cells the damage can be irreparable. The cells will begin to die. When this happens on a regular basis muscle wastage can occur. It also places the body under larger amounts of general stress which will begin to impact on our immune system. There is a large list of potential health implications that this can eventually lead to.

Preventing this scenario is relatively easy but not always something we think about. One of the determinants to energy supply is our energy store. In the case of HIIT we need adequate stores of glycogen for an adequate supply of energy. If we do HIIT in a fasted state we are putting ourselves under severe metabolic stress, as there is little energy supply to fuel it. In addition the lack of energy will dramatically reduce performance so conditioning benefits may also be lost.

The take home message is this. Fuel up for intense exercise! Low intensity exercise can be done in a fasted state as the oxidative system works effectively to provide fuel. With intense exercise such as HIIT style training, you must have some glycogen stores or glucose in the bloodstream. If you are in a totally fasted, glycogen depleted state then consume some simple sugars close to training. By doing so you can maintain high intensity and reduce cell stress. You will still achieve an elevated metabolism that promotes fat burning. You also place the cells under just enough stress to help promote hypertrophy

It is important to understand training methods as the smallest oversight can cause more harm than good. HIIT is an effective tool but if it is not adequately fuelled it loses a lot of its benefits. It is a popular successful way to train and should be used in any program. Like any training method the process is the important part. It needs to be considered and managed properly in order to see the full benefit.

Training masks; the science behind them!

People like new toys and gadgets, especially ones which can improve their performance. In recent years breathing masks and gas masks have become popular amongst athletes and fitness enthusiasts. The idea originated from firefighters and the military who experience some extremely intense, physical situations while wearing breathing apparatus. The experience of wearing these masks in such scenarios can be quite overwhelming. In order to familiarize themselves with these situations they began to train while wearing their equipment. Obviously the more accustomed to something we are the more comfortable we are with it. Shortly, after we saw them to be used in the fitness community. They started to use similar equipment in search of more intense training methods.

In very recent years breathing masks have been produced commercially and specifically for the fitness and sports industry. Like any new training tool it comes with many benefits. This article is aimed at examining the physiological theory for the use of such masks. By understanding the physiological processes taking place we can make better use of such equipment.

76366

The major misconception which seems to have formed with the use of these masks is their ability to replicate high altitude. High altitude has been linked to many physiological benefits to cardiovascular conditioning. The concept of this relates to the partial pressure of atmospheric oxygen. Oxygen (O2) molecules move from lungs to blood and the blood to muscle through a process of diffusion. The molecules travel across thin membranes from areas of high, to low pressure. If ambient oxygen pressure is low, as it is at high altitude, less molecules cross from lungs to the blood and so forth. The amount of O2 in the air remains exactly the same (20.93%) but overall air pressure (Barometric Pressure) is greatly reduced. In order to compensate, our body first increases breathing rate and take bigger breaths. This allows us to utilize a larger portion of the lung and alveoli allowing more O2 to diffuse into the bloodstream. Another reason is to excrete Carbon dioxide (CO2). By blowing off CO2 we drop the pH level of the blood and create something known as “Respiratory alkalosis”. This allows more oxygen to be absorbed by our red blood cells. This process occurs similarly at sea level.

When exposed to this over long duration (16hrs+ per day for a minimum of two days)(Chapman et al, 1998) our body increases a hormone called Erythropoietin (EPO). This hormone when combined with iron stimulates the creation of new red blood cells, a larger amount of which allows us to transport more O2 around the blood. In addition our muscles respond to training by increasing mitochondria and capillarization of the fibres. This allows our muscles to consume more oxygen. The issue with altitude training is that our breathing rate can only increase so much and the other adaptations are relatively slow to occur. As a result the intensity of our training significantly drops. This is why many athletes choose to live at altitude and travel to sea level to train. It allows the adaptations to occur without training intensity suffering. This limitation is well documented.

Breathing masks do not alter the partial pressure of O2. They simply restrict airflow. They do not specifically filter O2 from the air. We compensate for this restriction by breathing more forcefully creating positive pressure to overcome the resistance. This is similar to techniques adopted by individuals suffering with breathing difficulties such as asthma and COPD. Pursed Lip Breathing is an excellent example of a breathing technique used to compensate for resistance. It is also something we automatically do when wearing a gum shield or mouthguard. We do not experience any increase in EPO as pressure gradients are maintained. The processes taking place at altitude are different from the ones taking place when using these masks .

In order to compensate for resistance we must breath with more force, both when we inhale and exhale. We use the diaphragm and intercostal muscles. These muscles are like any other; they become stronger when a stress stimulus is applied. When using these masks we are in theory strength training our breathing muscles. This can allow us to utilize a larger portion of our lungs, making our breaths more efficient and deeper. It also allows us to develop our breathing muscles, which will make breathing easier in normal conditions. This is of great benefit to an athlete’s conditioning as the effort in breathing will be greatly reduced.

Elevation-Trianing-Mask-PKR_3596

In addition to physical adaptations we can also experience some mental benefits. In scenarios where breathing is restricted we get a sense of breathlessness. This often causes panic. In a competitive environment panic can be a debilitating experience. Like firefighters and military servicemen, becoming accustomed to that feeling can have a great benefit. Learning to be comfortable and to relax allows our breathing to settle. Having the experience to know how to breath efficiently in such a scenario can allow an athlete to maintain composure. I believe this to be a very significant benefit to the use of such masks.

Like any new tool or training method it is very important to understand the processes taking place and the adaptations that come with them. Unfortunately there is relatively little research available on the use of breathing masks. I believe them to be an effective tool when used for the right goal. With any training an athlete wants the best results. Examining the physiological process taking place we can often learn to make best use of the tool. While science cannot always give the exact answer it usually puts us on the right track.

Training for your first race.

It’s the summer time and time to get outdoors and get active. Whether you are looking to satisfy a competitive streak, trying to stay fit or just looking for something new to do with friends, competitions are great to look forward to. Tough mudders, Hell and back challenge, Color runs, triathlons and marathons are increasingly popular events. But where to start if you want to compete and complete one of these? This article is aimed at helping you to get yourself into a position where you can compete, have fun and finish the race.

Step 1: Make a plan

Decide what kind of race you want to do. Do you like the slow steady aspect of a marathon or the variety and challenge of a tough mudder. This will decide a lot of what you need to do to prepare for your race. Pick a realistic timeframe in which to train and a distance which is realistic for you right now.

Step 2: Buy a heart rate monitor (HRM)

There are many merits to heart rate training which have already been discussed in previous articles. To keep things simple a HRM will allow you to make each session efficient and make every bit of effort count towards your performance. Running on how you feel will only get you so far and a lot of your efforts might not necessarily be helping. HRM will make your training a lot more beneficial.

Step 3: Start

Sometimes showing up is half the battle. Just by getting out and getting a few runs will have a very significant benefit. Often the start is the most daunting part. Getting a few runs in will help get you over the break-in soreness of new exercise. It can also help prevent blisters and other nasty issues that can ruin your first race experience. The initial response to training is also quite remarkable. Just a couple of runs could turn what could be a living hell into a quite manageable and enjoyable experience.

Step 4: Pace yourself

Once you get started the next thing will be having discipline. A gradual increase in training is more sustainable both mentally and physically. Beginners have a great tendency to go all out for their first week only to be too sore and tired to get past week two. Let yourself recover and be in a situation where you want to do more rather than dreading the next session because you are so sore. Over time this will be better than beating yourself into the ground each time. It will also help the lazier types who will dread their next session a little less if they enjoyed the previous one.

Step 5: The next step.

Once you become comfortable running or doing whatever the activity is, you now need to become organized with training to keep moving forward. This is where the HRM comes in handy. While you may not be ready for HR zone training you can start getting familiar with how the monitor works. Try doing your regular run whilst maintaining a nice steady heart rate. It can take practice to learn how to manage your pace and breathing to stay in a heart rate zone. Beginners often go off and run as hard as they can letting their heart rate jump up and down. This has little benefit to them; by focusing on keeping their heart rate nice and low and steady they will be prepared to use their HRM better and more effectively for their next race.

The most important thing about racing is that you enjoy it. It is harder to enjoy something which makes you feel like you are about to die. In order to enjoy your hobby you must prepare yourself enough to make it possible. Things take time and you should realize that by just getting moving you’re heading in the right direction. Don’t think of training as a dreaded necessity; it is your hobby, enjoy the sessions and gradually build yourself up. Don’t leave it to the week before a race to train, you’ll only risk disaster and possibly ruin the whole experience for yourself.

Alcohol and athletes!

Check out our recent article on how alcohol interacts with our body during training and competition. As featured in BOXROX magazine!

http://www.boxrox.com/alcohol-crossfit-performance/

The Great Offseason!

For many sports in the Northern Hemisphere we are now entering the offseason portion of the annual cycle. For some this is simply a period in which they can cut loose and not worry too much about their training. For others this offseason could be a make or break point in their career. It can be very hard for an athlete to make progress in their offseason for a number of reasons. A lot of athletes fail to stay committed and motivated when they are outside of their team environment or without any immediate competition scheduled, others can be over eager and try to do too much. This can often lead to overtraining and burnout despite being outside of the competition period. Planning and organization is key to a successful offseason. The following article will discuss how to get the most out of an offseason and hopefully allow athletes to step up their ability for next season.

Step 1: Analysis

At the end of a competitive season athletes and coaches should review the performance of the season. Often mistakes are pretty clear at this point and athletes will have a good idea of their weaknesses. In order to maintain motivation and commitment it is important to identify areas where progress can be made. There is nothing more disheartening than finishing a season and being clueless as to where to improve. Regardless of success or failure, the notion of progress is a powerful motivator. Honest analysis of strengths and weaknesses is essential at this point. Building an offseason program is relatively simple if an effective evaluation has been completed.

Step 2: Rest

Often the first thing we tell an athlete to do is rest. A few weeks rest can be very beneficial at this time. Mental and physical strain stacks up over a season and often a couple of weeks rest can have a major impact on an athlete. The amount of rest depends on the time available but even a week can be enough to reset the athlete. Often this rest also makes an athlete restless and eager to train. This can be beneficial in an offseason where there is no competition to create that eagerness to work.

Step 3: The Program

This is obviously a very important component and will depend on the outcome of their end of season evaluation. The offseason should be approached with a triage perspective. Take care of the biggest weakness first. One caveat to this is timing. Some adaptations occur over very different time frames. For example an athlete may be a little undersized but definitely too slow. Addressing speed is essential but should not be done until the athlete is at a consistent weight. Hypertrophy may take more time and energy from an athlete. Often it can be hard to address hypertrophy inseason relative to speed and so the offseason period is more suitable to address it. Speed can then become a part of late offseason/preseason period. Careful planning is essential to ensure that the focus on one ability does not overwrite another.

There is great debate on the structure of programs and their efficiency. We take an approach with our athletes where we utilize block periodization in the offseason and then move towards concurrent and/or conjugate style during preseason and in season. The reason is most athletes tend not to lose their strengths significantly and if they do they usually regain them quite fast. In the offseason we use block periodization to really focus in on their weaknesses and make as much of an impact as possible. Sometimes this may neglect some of their stronger areas. When we move towards a conjugate style we hit on a little of everything. We then see a rapid return in their strengths while maintaining the progress made in their weak areas. The offseason then serves to fill in the holes in their abilities. For the majority of athletes this approach is effective in improving their performance from one season to another.

The offseason period can make a huge difference to an athlete. If it is individualized and shows the athlete a genuine prospect for improvement then motivation won’t be a major problem. Diligent monitoring of program will then make the program effective as it can be tweaked where needed to suit the needs of the athlete. The biggest mistake to make is to use a generic program which does not address the individual. This often makes situations worse as the athlete may fail to fix his weaknesses. There is nothing worse than the feeling an athlete has where no progress is being made. Consecutive seasons of stagnant performance can be a death blow to many athletes careers.

Stalled progress!!!!

There are times in our training when no matter how much effort we put in, progress seems to stall. Our natural inclination is to do more work. This is rarely the solution. We know that the body adapts well to stress stimuli. We use progressive overload programs to take advantage of this to make us stronger and fitter. If we use one training program for too long the abilities it focuses on will improve significantly up to a point. Over time weak links can appear as some abilities greatly exceed others. It may simply be caused by a lack of practice or perhaps a more physiological based reason.

There is an expression that says the best training program is the one you are not doing. We naturally tend to focus on the skills we have an aptitude for. We become addicted to progress and we generally progress best at things we have a natural disposition for, largely  because we enjoy doing them. The things we avoid or neglect do have a tendency to catch up to us and often hold us back.

For example an athlete may be training specifically for strength. They have a low rep high load program to do so. Initially there is great neural response and they become stronger without significant increases in muscle mass. Progress then stalls. They may try to force weight onto the bar during his lifts but does not successfully achieve the reps. They become frustrated because they are seeing no progress. The problem is not with the rep scheme. The problem lies in that they may have achieved maximum strength for their current muscle mass. Contractile strength is largely determined by the cross sectional mass of a given muscle. At this point they should look to increase mass and raise the level of force that they can produce. After addressing this they could return to a strength program and once again see steady progress.

In the case of endurance athletes it is not uncommon for them to perform large volume at low intensity early in a season to build stamina. When they go to race they may find that while they do possess good stamina, they lack high end pace for faster races and at the finish. Some assume this is a lack of fitness when it is in fact a lack of both power and sprint capacity. Spending some time focused on shorter sprints will allow them to have a higher ceiling of power that they can utilize during more intense stages of a race.

While these scenarios seem obvious on paper they are rarely easily identified by an athlete. When there is an emotional attachment to the training and performance it is easy to become distracted from the obvious. Coaches and athletes all have certain styles they favour and rarely venture too far from what they are used to. Often stagnation occurs due to lack of variety in their training.

The best way to overcome this is to have an appropriate testing procedure. Athletes and coaches must be analytical and honest with where they are and where they need to be. Things are often quite clear and the solution quite simple when regular testing is implemented. What is difficult is having the confidence to leave their comfort zone of training to address the problem. Endurance athletes in particular can be extremely hesitant to utilize strength training despite the benefits, which have been detailed in a previous article https://hamiltonsport.com/2015/03/16/weight-training-and-endurance-athletes/. A good athlete and coach need to have the confidence to address an issue even if it does not fit with their current training methodology. It is simply a waste of effort to continue when there is no progress being made. Identify what is missing and improving it will often jump start progress all round. So if you think your progress is stalled stop and think what your program is missing.

Clear goals, Clear Progress!

Our body has a remarkable abilty to adapt. There are hundreds of processes and systems which work in unison to keep us functioning. When we apply stimuli or stress to our body, it responds in such a way that allows it to effectively continue to function under that stress. This response is what we use to become faster, stronger or fitter. The downside of this adaptation is that there is usually a tradeoff between the systems. It is extremely difficult to train all capabilities at once. This is the main challenge for any coach or trainer. They must construct an appropriate training program which achieves an improvement in certain capabilities while not negatively affecting the others.

One common scenario is related to body composition. Often an athlete will need to increase body mass while simultaneously reducing body fat. These goals directly conflict with each other. To increase body mass we need a calorie surplus but to reduce body fat we need a calorie deficit. It is contradictory. Many athletes attempt this believing that if they increase muscle mass there will be an increase in energy expenditure associated with greater muscle mass. While in theory this is possible it is a very difficult task to achieve in a real world scenario. A more effective strategy would be to alternate between periods of surplus and deficit, carefully monitoring both variables to ensure gradual progress in both. This would result in small body mass fluctuations but over time it would achieve the goal.

Another example is the athlete who wishes to improve both aerobic and strength capabilities simultaneously. While it is completely achievable, progress will be relatively slow. This is simply because while one promotes the development of type 2 fibres, the other is promoting development of type 1 fibres. This is not the most efficient approach to the task. Depending on time frame it may be necessary, but it is not as effective as partitioning the goals and focusing directly on one capability.

There are many training program designs and methodologies which look to solve the challenge of training multiple abilities at once. The problem is that combining certain training goals can be extremely counterproductive. The strategy for an athlete should be to always look for maximum gains with minimal effort and interference with other capabilities. This is not to advocate a lazy athlete. Instead it advocates a smart athlete who looks to effectively promote some qualities without negatively impacting others.

In terms of programming for an athlete, it is important to keep things as simple as possible. Athletes should have few but specific targets to work towards. Often high level athletes have so many targets to hit that they get lost. A wheelspin effect is created where their efforts counteract each other leading to very little progress. As simple as it sounds athletes should have a clear goal and stick to the process which achieves it. When they achieve this goal, they should identify their next weakness and follow the process to improve it and so on. Keeping goals clear and simple is the most effective way to make solid and consistent progress.